
REAL-TIME IMPLEMENTATIONS OF SPARSE LINEAR PREDICTION
FOR SPEECH PROCESSING

Tobias Lindstrøm Jensen1, Daniele Giacobello2, Mads Græsbøll Christensen3,

Søren Holdt Jensen1, Marc Moonen4

1Dept. of Electronic Systems, Aalborg Universitet, Denmark
2Office of the CTO, Broadcom Corporation, Irvine, CA, USA

3Audio Analysis Lab, Dept. of Architecture, Design and & Technology, Aalborg Universitet, Denmark
4Dept. of Electrical Engineering (ESAT-SCD) and iMinds Future Health Dept., KU Leuven, Belgium
{tlj,shj}@es.aau.dk, giacobello@broadcom.com, mgc@create.aau.dk, marc.moonen@esat.kuleuven.be

ABSTRACT

Employing sparsity criteria in linear prediction of speech has been

proven successful for several analysis and coding purposes. How-

ever, sparse linear prediction comes at the expenses of a much higher

computational burden and numerical sensitivity compared to the tra-

ditional minimum variance approach. This makes sparse linear pre-

diction difficult to deploy in real-time systems. In this paper, we

present a step towards real-time implementation of the sparse linear

prediction problem using hand-tailored interior-point methods. Us-

ing compiled implementations the sparse linear prediction problems

corresponding to a frame size of 20ms can be solved on a standard

PC in approximately 2ms and orders faster than with general pur-

pose software.

Index Terms— Sparse linear prediction, convex optimization,

real-time implementation, speech analysis.

1. INTRODUCTION

Linear prediction (LPC) is, arguably, the most used parametric

modeling technique for the analysis and coding of speech sig-

nals [1]. Minimum variance LPC with the 2-norm criterion has

found a widespread use, mostly for its amenability of producing

an optimization problem that is attractive both theoretically and

computationally. Theoretically, this method corresponds to the

maximum likelihood (ML) approach when the prediction error sig-

nal is considered to be i.i.d. Gaussian, making it mathematically

tractable [2]. Furthermore, according to Parseval’s theorem, min-

imizing the 2-norm of the prediction error in the time-domain is

equivalent to minimizing the error between the true and estimated

spectra, thus giving LPC an easy spectral interpretation. Compu-

tationally, the minimization of the 2-norm of the prediction error

results in the Yule-Walker equations which can be solved efficiently

via the Levinson recursion. Stability is intrinsically guaranteed by

the construction of the problem [3] and can be easily preserved by

the numerical robustness of the Levinson recursion. Nevertheless, in

LPC of speech, sparsity criteria have been shown to provide a valid

alternative to the 2-norm minimization criterion, overcoming most

of its deficiencies in modeling and coding [4–8]. In particular, in [6],

a new formulation for speech coding is introduced that provides not

only a sparse approximation of the prediction error, which allows

The work of T. L. Jensen is supported by The Danish Council for Strate-
gic Research under grant number 09-067056.

for a simple coding strategy, but also a sparse approximation of a

high-order predictor which successfully models jointly short-term

and long-term redundancies.

Sparse LPC can be formulated as a convex optimization prob-

lem, specifically as a linear programming (LP) problem. In order

to be deployed in real-time applications, it requires its convex op-

timization core to be embedded directly in the algorithm that runs

online and where strict real-time constraints apply1. While con-

vex optimization problems can be efficiently solved, both in the-

ory, with worst-case polynomial complexity [9] and in practice, see

e.g., [10, 11], it is rarely limited in its implementation by real-time

constraints. Its employment in optimization problems is generally

limited to design purposes, e.g., finding the coefficients of finite im-

pulse response filters [12] or offline signal processing, e.g., image

denoising [13]. However, modern algorithms along with technol-

ogy advances in processing power, have dramatically reduced so-

lution times. This introduces the possibility of embedding convex

optimization directly in signal processing algorithms that run online,

with strict real-time constraints [14, 15].

In this paper, we propose a LP implementation of the sparse LPC

problem using interior point methods. By hand-tailoring the solver

to this particular problem we are able to obtain a solution time that is

orders faster than with general purpose software. The paper is struc-

tured as follows. In Sec. 2 we define our notation and give an intro-

duction to sparse LPC. In Sec. 3 we give two methods for solving the

sparse LPC problem and provide details to the implementation. In

Sec. 4 we provide experimental data of the timing benchmarks and

discuss and conclude on the results in Sec. 5.

2. SPARSE LINEAR PREDICTION

We consider the following speech production model, where a sample

of speech x[t] is written as a linear combination of K past samples

x[t] =

K
∑

k=1

αkx[t− k] + r[t], (1)

where {αk} are the prediction coefficients and r[t] is the prediction

error. Considering this model for a segment of T speech samples

x[t], t = 1, 2, . . . , T in matrix form

x = Xα+ r, (2)

1LPC in traditional speech coders is usually performed every 5–10 ms

[1].

8184978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

where

x =







x[T1]
...

x[T2]






, X =







x[T1 − 1] · · · x[T1 − n]
...

...

x[T2 − 1] · · · x[T2 − n]






. (3)

The general LPC problem is then written as

minimize
α∈Rn

‖x−Xα‖pp + γ‖α‖kk . (4)

The starting and ending points T1 and T2 can be chosen in vari-

ous ways by assuming x[t] = 0 for t < 1 and t > T . Here, we

will use the most common choice of T1 = 1 and T2 = T + K,

which is equivalent, when p = 2 and γ = 0, to the autocorrelation

method [16]. With m = K + T and n = K then x ∈ R
m, X ∈

R
m×n, α ∈ R

n. The introduction of the regularization term with

γ in (4) can be seen as being related to the prior knowledge of the

prediction coefficients vector α. While sparsity is often measured by

the cardinality, we will use the more computational tractable 1-norm

‖ ·‖1, which is known throughout the sparse recovery literature (see,

e.g., [17]) to perform well as a relaxation of the cardinality measure

with equivalence in certain cases. The problem then becomes

minimize
α∈Rn

‖x−Xα‖1 + γ‖α‖1. (5)

By exploiting the sparsity of the high-order predictor and the sparse

prediction error, or residual, we are able to define a very simple

speech coding scheme. For more on this we refer the reader to

[6, 18].

3. METHODS

There are many methods for solving the sparse LPC (5). In this pa-

per, we will focus on primal-dual interior-point methods. The pur-

pose is twofold. Firstly, these are well known efficient methods for

convex optimization used in real-time convex optimization [19, 20];

Secondly, by comparing the proposed solver with general-purpose

software based on interior-point methods [11, 21], we can measure

the improvement of hand-tailoring the algorithms for the same class

of methods.

Specialized software to solve real-time convex optimization

exists but it has a few limitations. For example, to implement

small/sparse problems it is possible to use automatic tools for C

code generation of a primal-dual interior-point method for a specific

problem family which results in fast implementations [14, 19]. The

sparse LPC problem is small but X is in general not sparse and even

m,n ≈ 40 will result in the number of coefficients in the problem to

grow above the suggested limit of 4000 coefficients that the system

can handle (as reported on cvxgen.com, software page of [19]). This

effectively limits T and K in the sparse LPC to the smallest values

considered in sparse LPC. In the numerical experiments, we will

consider this method only for a small problem instance. The work

in [20] presents a primal-dual algorithm for the sparse LPC problem

(γ = 0). We extend this work to the sparse coefficients problem

(γ > 0), and also consider compiled implementations, and timing

based benchmarking among state-of-the-art methods.

The key element in interior-point methods is a fast and stable

procedure for solving a linear system of equations in each iteration

[10]. In the following, we will review two different methods for

solving the problem (5) using interior-point methods and analyze

the associated linear system. The details of the algorithms are given

in [22, 23], respectively.

3.1. Dual Based Approach

Consider one standard form LP [22]

minimize c̄T x̄

subject to Āx̄ = b̄
x̄ � 0

(6)

where c̄, x̄ ∈ R
N̄ , b̄ ∈ R

N̄ and Ā ∈ R
M̄×N̄ with the dual problem

maximize b̄T λ̄

subject to ĀT λ̄+ s̄ = c̄
s̄ � 0

(7)

where λ̄ ∈ R
M̄ and s̄ ∈ R

N̄ . Then the sparse LPC problem (5) is a

LP on the form (6) with

x̄=







x̄1

x̄2

x̄3

x̄4






, c̄=







1

1

γ1
γ1






, Ā=

[

−I I −X X
]

, b̄=2x

(8)

where 1 = [1, 1, . . . , 1]T of appropriate size and the original vari-

able is related to the optimization variable by α = 1
2
(−x̄3 + x̄4).

Following [22], we form the system of equations (normal-equations

form) that that we must solve in each iteration as

ĀD̄Ā
T∆λ̄ = −r̄ (9)

where D̄ = diag([d̄1, d̄2, d̄3, d̄4]
T) ∈ R

(2m+2n)×(2m+2n) is a

diagonal positive definite matrix and r̄ ∈ R
m is some right hand

side. With D̄1 = diag(d̄1), D̄2 = diag(d̄2) ∈ R
m×m and D̄3 =

diag(d̄3), D̄4 = diag(d̄4) ∈ R
n×n the coefficient matrix in (9) is

then

ĀD̄Ā
T = (D̄1 + D̄2) +X(D̄3 + D̄4)X

T
. (10)

Notice that this a m × m system (m = M̄) connected to the dual

variable λ̄. We will call this approach the dual based approach and

the corresponding algorithm is referred to as the dual based algo-

rithm. This is a dense system which can be formed and solved in

O(m2n+m3) operations via Cholesky factorization. Changing the

linear systems of equations to normal-equations form and solving

it via Cholesky factorization is regarded as the fastest method [10].

We prefer this method since we are aiming for speed. The dual based

approach is then [22, Algorithm 14.3].

3.2. Primal Based Approach

In this second approach, we instead follow the standard LP form

minimize c̃T x̃

subject to G̃x̃ � h̃
(11)

where c̃, x̃ ∈ R
Ñ , h̃ ∈ R

M̃ and G̃ ∈ R
M̃×Ñ . The sparse LP

problem (5) can be formulated as

minimize
α∈Rn

‖Ãα− b̃‖1 , Ã =

[

−X
γI

]

, b̃ =

[

−x
0

]

(12)

which is on the form (11) with

G̃ =

[

Ã −I

−Ã I

]

, h̃ =

[

b̃

−b̃

]

, c̃ =

[

0
1

]

. (13)

8185

Following, the primal-dual interior-point algorithm in [23], we need

to solve problems of the form

[

0 G̃T

G̃ −D̃−1

] [

∆x̃
∆z̃

]

= −

[

rc
rh − D̃′rs

]

(14)

where D̃ ∈ R
(2m+2n)×(2m+2n) is a positive definite diagonal ma-

trix and D̃′ ∈ R
(2m+2n)×(2m+2n) is a diagonal matrix that changes

in each iteration (rc ∈ R
n+m and rh, rs ∈ R

2m+2n changes as

well). Equation (14) can be reduced to the normal-equation form

G̃
T
D̃G̃∆x̃ = −rc − G̃

T
D̃(rh − D̃

′
rs) (15)

∆z̃ = D̃(G̃∆x+ rh + D̃
′
rs) . (16)

Since rc = GT ẑ where ẑ ∈ R
2n+2m is the current dual iterate the

above system can with a y ∈ R
2n+2m be interpreted as

G̃
T
D̃G̃∆x̃ = −G̃

T
y . (17)

With (13) we can write (17) as

[

ÃT −ÃT

−I −I

][

D̃1 0

0 D̃2

][

Ã −I

−Ã −I

][

∆α
∆v

]

= −

[

ÃT g1
g2

]

(18)

with explicitly defined g1 ∈ R
n+m, g2 ∈ R

n and ∆x̃ = [∆α, ∆v]T .

Following [24, §11.8.2], this can be reduced to a linear system of

equations of the form

Ã
T
D̆Ã∆α = −Ã

T
g̃ (19)

where g̃ ∈ R
m+n and D̆ ∈ R

(m+n)×(m+n) is a positive definite

diagonal matrix. The step ∆v is then given as a function of ∆α [24,

§11.8.2]. The system (19) can be efficiently formed using (12) as

Ã
T
D̆Ã = X

T
D̆1X + γ

2
D̆2 (20)

where D̆ = diag(d̆) = [diag(d̆1), diag(d̆2)]
T and D̆1 =

diag(d̆1) ∈ R
m×m and D̆2 = diag(d̆2) ∈ R

n×n. The sys-

tem in (19) is an n × n system connected to the primal variable α.

The coefficient matrix of this system is positive definite if γ > 0 or

the signal is full rank rank(X) = n. We will call this approach the

primal based approach and the corresponding algorithm is referred

to as the primal based algorithm. This should be compared to the

dual approach which leads to an m × m positive definite system.

This implies that the efficiency of the primal and dual based ap-

proaches depends on the values of m and n. The linear system of

equations in the primal based method can be formed and solved in

O(n2m + n3) operations via Cholesky factorization. The primal

based algorithm is then designed following [23] without self-dual

embedding.

The system (19) corresponds to the normal-equations for the

weighted linear least-squares problem [24, §11.8.2]

minimize
∆α∈Rn

‖D̆
1

2

(

Ã∆α+ D̆−1g̃
)

‖22 . (21)

Since Ã is of the form (12), the problem (21) can be reformulated as

the generalized Tikhonov problem

minimize
∆α∈Rn

‖D̆
1

2

1

(

D̆−1
1 g̃1−X∆α

)

‖22+γ2‖D̆
1

2

2

(

∆α+D̆−1
2 g̃2

)

‖22

(22)

where g̃ = [g̃1, g̃2]
T . Notice the similarity between problem (22)

and (5).

3.3. Implementation

The proposed algorithms are implemented in M (Matlab) and C++.

The C++ implementation uses the LAPACK and BLAS library

from the Intel Math Kernel Library (MKL). More specific opera-

tions, such as diagonal-times-vector and diagonal-times-matrix, are

implemented using Hadamard products and bsxfun in Matlab, re-

spectively. In C++, diagonal-times-vector is implemented as a loop

and diagonal-times-matrix as a loop with some BLAS calls. The

structure in the multiplication with the constraint matrices is also

exploited, e.g., from (8)

Āx̄ = x̄2 − x̄1 +X(x̄4 − x̄3) . (23)

and it is then only necessary to apply matrix-vector multiplication

with X ones for each matrix-vector multiplication with Ā. The

matrix-vector multiplication can also be implemented as a filtering

operation but we prefer matrix-vector multiplication since it makes it

possible to employ the highly optimized BLAS library MKL. Many

computing units, such as the central processing unit (CPU) on a stan-

dard PC, are capable of performing more single precision operations

than double precision operations per second. This is exploited in

the implementations where the first iterations are executed in single

precision. Single precision execution stops when the stopping con-

ditions [10, p. 226] are satisfied with ǫ = 10−3. Double precision

execution stops with ǫ=10−6. If the Cholesky factorization fails in

double precision the algorithms add 10−6 to the diagonal and retry

the factorization.

We will call Mprimal the primal based algorithm implemented

in double precision with M (Matlab) and Cprimal the one im-

plemented in C++. Similarly for the dual based algorithms Mdual

and Cdual. Algorithms using the single/double strategy are named

Cprimal(s/d) and Cdual(s/d). Implementations are avail-

able 2.

4. EXPERIMENTAL RESULTS

Benchmarking is performed with 3 settings denoted #1, #2 and #3

using a ≈ 2.5 s long vocalized speech signal sampled at 8 kHz. In

setting #1 and #2 each frame is 20ms (T = 160 samples) with

order K = 100, K = 40 respectively. Setting #3 processes 5ms
speech frames (T = 40) with order K = 10. Setting #3 may not be

practical but is included to allow for a comparison with state-of-the-

art methods and exemplifies the relation between scaling and speed.

The time from call of the solver to return is measured, exclud-

ing the time to form the data (matrices) that are given as input. The

POSIX function gettimeofday is used to measure the execution

time of the proposed algorithms in C++. For the simulations in Mat-

lab we do a warm-start before measuring the timing [25]. The timing

is measured over 100 solves of each frame to average out possible

system processes (note that each frame is then static and the solvers

then run with the exact same input). The setting γ = 0.1 was exper-

imentally found to be a reasonably choice and fixed for all simula-

tions. The solutions from the algorithms are validated by comparing

the objective of all the solutions (no solution has an objective that is

more than 0.004% larger than the smallest objective). The simula-

tions are executed on an Intel(R) Dual Core(TM) i5-2410M CPU at

2.3GHz with Ubuntu Linux kernel 3.2.0-32-generic, MKL 10.3 and

Matlab 7.13.0.564. The algorithms implemented with C++ are com-

piled using gcc-4.6 and the -Os -march=native optimization

2Implementations with a Matlab mex interface can be obtained from
sparsesampling.com/sparse_lp

8186

option. The binaries and Matlab are executed with highest priority.

We compare the implementation with the general purpose software

Mosek 6.0 [11], CVX+SeDuMi 1.21 [21, 26], both via a Matlab

interface, and a code generated solver from CVXGEN [19].

Methods #1 #2 #3

CVX+SeDuMi
416.39

279.17/520.12

344.73

246.25/428.54

172.29

148.10/199.95

Mosek
38.40

28.05/44.00

17.12

14.15/41.06

4.56

3.60/4.82

Mprimal
25.24

14.41/35.48

11.47

6.32/14.54

4.27

2.26/6.08

Mdual
23.49

13.09/30.19

13.55

7.78/19.67

3.15

2.14/4.84

CVXGEN N/A N/A
0.56

0.38/0.72

Cprimal
10.63

6.70/13.58

2.30

1.51/2.75

0.24

0.14/0.41

Cdual
13.79

7.36/17.70

5.52

3.07/8.61

0.41

0.28/0.64

Cprimal(s/d)
8.02

5.29/10.64

1.96

1.36/2.29

0.23

0.15/0.30

Cdual(s/d)
10.22

5.08/14.69

4.60

2.23/6.96

0.39

0.24/0.63

Table 1. Timing (across frames) in milliseconds. Format: Average

over min/max. The three settings are #1 T = 160, K = 100 (m =
260, n = 100), #2 T = 160, K = 40 (m = 200, n = 40), #3

T = 40, K = 10 (m = 50, n = 10).

The results are shown in Table 1. It is not possible to gener-

ate a solver from CVXGEN for setting #1 and #2 but setting #3

is small enough for CVXGEN to handle. From the table observe

that the primal based algorithms are faster than the dual based al-

gorithm. This is due to the fact that for all settings m > n and

then its computational cheaper to form and solve the linear system

of equations in the primal based algorithm. We also see a modest de-

crease in timing for the larger problems when going from a double

precision solver such as Cprimal to a mixed (single/double) preci-

sion solver such as Cprimal(s/d). A speed-up is observed from

M scripts to compiled C++ implementations. Specifically, consider-

ing the Mprimal and Cprimal algorithms there is a speed-up of

#1: 2.4, #2: 5.0 and #3 17.8, i.e., a speed-up that increases as the

optimization problem becomes smaller. This demonstrates that for

small problems it is necessary with compiled implementations. Ob-

serve that the compiled algorithms using C++ compare favorably to

CVXGEN for setting #3. Note that the fastest algorithm for setting #3

provide solutions in sub-milliseconds and is three orders faster than

the slowest algorithm. CVX+SeDuMi is a highly used optimiza-

tion software for prototyping and is only added here to highlight the

potential speed-up that a hand-tailored algorithm can achieve. Min-

imum and maximum solve time is also presented in Table. 1, which

provides important information for designing systems with hard time

constraints. In these simulations we have fixed ǫ = 10−6 but to re-

duce maximum solve time, the algorithm could be altered to return

after a certain fixed time with a less accurate solution.

5. DISCUSSION AND CONCLUSIONS

The first attempt to find a faster solution to the sparse LPC problem

can be found in [8] where, acknowledging the impractical usage of

the LP formulation in real-time systems, the sparse LPC problem is

approximated using the Burg method for prediction parameters esti-

mation based on the least absolute forward–backward error. In this

approach, however, the sparsity is not preserved and this approxima-

tion only solves (5) for γ = 0. The work in [20], to the authors’

knowledge, is the first to introduce a LP formulation for the sparse

LPC problem (5) to reduce the complexity of its solution. Also in

this approach, the solution is only defined for γ = 0. In this work,

we extended and generalized the LP solution of (5) for γ > 0 and

provide algorithmic details for a real-time solution of the sparse LPC

problem for speech processing. In particular, exploiting the structure

of the problem we can bring the size of the linear system of equations

to the smallest possible (m or n). We would like to note that in gen-

eral interior-point methods are not implemented using fixed-point do

to requirements on high precision arithmetic [10].

6. REFERENCES

[1] J. H. L. Hansen, J. G. Proakis, and J. R. Deller Jr, Discrete-time

processing of speech signals, Prentice-Hall, 1987.

[2] F. Itakura and S. Saito, “Analysis synthesis telephony based on

the maximum likelihood method,” in Proc. 6th Int. Congress

Acoust., 1968, vol. 17, pp. C17–C20.

[3] L. Knockaert, “Stability of linear predictors and numerical

range of shift operators in normal spaces,” IEEE Trans. Inf.

Theory, vol. 38, no. 5, pp. 1483 –1486, Sep. 1992.

[4] C.-H. Lee, “On robust linear prediction of speech,” IEEE

Trans. Acoust, Speech, Signal Process., vol. 36, no. 5, pp. 642

–650, May 1988.

[5] M. N. Murthi and B. D. Rao, “Towards a synergistic multi-

stage speech coder,” in Proc. Int. Conf. Acoust., Speech, Signal

Process. (ICASSP), May 1998, pp. 369–372.

[6] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen,

and M. Moonen, “Sparse linear prediction and its applications

to speech processing,” IEEE Trans. Audio, Speech, Lang. Pro-

cess., vol. 20, no. 5, pp. 1644–1657, Jul. 2012.

[7] J. Makhoul, “Linear prediction: A tutorial review,” Proc.

IEEE, vol. 63, no. 4, pp. 561–580, Apr. 1975.

[8] E. Denoel and J.-P. Solvay, “Linear prediction of speech with

a least absolute error criterion,” IEEE Trans. Acoust., Speech,

Signal Process., vol. 33, no. 6, pp. 1397 – 1403, Dec. 1985.

[9] Yu. Nesterov and A. Nemirovskii, Interior-Point Polynomial

Methods in Convex Programming, SIAM, 1994.

[10] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM,

1997.

[11] E. D. Andersen, C. Roos, and T. Terlaky, “On implementing

a primal-dual interior-point method for conic quadratic opti-

mization,” Math. Program. Series B, pp. 249–277, Feb. 2003.

[12] L. Rabiner, “Linear program design of finite impulse response

(FIR) digital filters,” IEEE Trans. Audio Electroacoust., vol.

20, no. 4, pp. 280 – 288, Oct. 1972.

[13] M. Elad and M. Aharon, “Image denoising via sparse and

redundant representations over learned dictionaries,” IEEE

Trans. Image Process., vol. 15, no. 12, pp. 3736–3745, Dec.

2006.

8187

[14] J. Mattingley and S. Boyd, “Real-time convex optimization in

signal processing,” IEEE Signal Process. Mag., Special Sec-

tion – Convex Optimization in Signal Processing, vol. 27, no.

3, pp. 50–61, May 2010.

[15] B. Defraene, T. van Waterschoot, H. J. Ferreau, M. Diehl, and

M. Moonen, “Real-time perception-based clipping of audio

signals using convex optimization,” IEEE Tran. Audio Speech

Lang. Process., vol. 20, no. 10, pp. 2657–2671, Dec. 2012.

[16] P. Stoica and R. L. Moses, Spectral analysis of signals, Pear-

son/Prentice Hall, 2005.

[17] D. L. Donoho and M. Elad, “Optimally sparse representation

in general (nonorthogonal) dictionaries via l1 minimization,”

Proc. Natl. Acad. Sci. USA, vol. 4, no. 5, pp. 2197–2202, Mar.

2003.

[18] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen,

and M. Moonen, “Speech coding based on sparse linear pre-

diction,” in Proc. Eur. Signal Process. Conf. (EUSIPCO), Aug.

2009, pp. 2524–2528.

[19] J. Mattingley and S. Boyd, “CVXGEN: A code generator for

embedded convex optimization,” Optim. Eng., vol. 13, no. 1,

pp. 1–27, Mar. 2012.

[20] G. Alipoor and M. H. Savoji, “Wide-band speech coding based

on bandwidth extension and sparse linear prediction,” in Int.

Conf. Telecommun. Signal Process. (TSP), Jul. 2012, pp. 454–

459.

[21] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for

optimization over symmetric cones,” Optim. Methods Softw.,

vol. 11-12, pp. 625–653, 1999.

[22] J. Nocedal and S. Wright, Numerical Optimization, Springer

Verlag, 1999.

[23] L. Vandenberghe, “The CVXOPT linear and quadratic cone

program solvers,” 2010, Available from abel.ee.ucla.

edu/cvxopt/documentation/coneprog.pdf.

[24] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-

bridge University Press, 2004.

[25] T. Larsen, G. Pryor, and J. Malcolm, “Jacket: GPU powered

MATLAB acceleration,” in NVIDIA Computing Gems: Jade

Edition, W.-M. W. Hwu, Ed., chapter 28. Morgan-Kaufman,

Oct. 2011.

[26] M. Grant and S. Boyd, “CVX: Matlab software for disciplined

convex programming, version 1.21,” http://cvxr.com/

cvx/, Apr. 2011.

8188

