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ABSTRACT

Instrumental evaluation of the perceived audio signal quality is an

important tool for the development of audio signal enhancement and

transmission systems. There are various single channel measures

which can be used for different application scenarios. Binaural sig-

nals have not received much focus so far and no sophisticated model

of spatial perception is utilized in the available measures. In this

contribution, an extension to Perceptual Evaluation of Audio Qual-

ity (PEAQ) is presented which makes use of a recently proposed bin-

aural hearing model. It is shown that the inclusion of spatial infor-

mation into the instrumental quality measurement leads to a strongly

increased correlation between the instrumental measure and a listen-

ing test.

Index Terms— Instrumental Quality Measure, Binaural, PEAQ

1. INTRODUCTION

When designing speech and audio signal transmission or enhance-

ment systems, it is an important task to evaluate the perceived qual-

ity. The gold standard for this are listening tests [1] which are very

flexible as they can be tailored to the system under test (SUT). There

are tools available to conduct listening tests (e.g., [2]). During algo-

rithm development however, continuously conducting listening tests

for each minor modification is cumbersome and time consuming.

Hence, the instrumental assessment of the perceived quality is

a topic that has been receiving continuous interest. An overview on

quality assessment in general can be found in [3, 4]. Approaches for

the evaluation of multi-channel signals in particular are considered

in [5, 6].

This paper presents an extension to PEAQ that is based on a

binaural auditory and perceptual model we presented in [7] for the

calculation of binaural model output variables (MOVs) which are

fed to a neural network (NN) together with the result of PEAQ.

1.1. Relation to prior work

For the evaluation of single channel signal processing systems,

PESQ [8, 9] and POLQA [10] are established for speech enhance-

ment and transmission systems. For generic audio signals, PEAQ

[11] is a known and reliable measure. Therefore, it is regularly used

in different areas of acoustic signal processing [12, 13]. The funda-

mental principle of PEAQ is the calculation of so-called MOVs of

a monaural hearing model, comparing these MOVs of the reference

(input) signal and the degraded (output) signal of the SUT and feed-

ing these differences into a NN that is trained based on the known

results of numerous listening tests.

PEAQ does offer the possibility to evaluate stereo signals as

well. In this case, two monaural hearing models are used in par-

allel ( [11]: ”... in the case of stereo signals all computations are

performed in the same manner and independently of one for the left

and right channel.”), i.e., no inter-channel cues are taken into con-

sideration. The MOVs of the two channels are then averaged before

the NN and an overall quality for the stereo signal processing system

results. The effect of this averaging before the NN is very similar to

just using PEAQ separately for the two channels and averaging the

final objective difference grade (ODG) values.

It will be shown in this paper that this leads to a fairly poor

matching between the estimated quality and the perceived subjective

spatial quality for many audio signals. Many lossy transmission sys-

tems (e.g., speech and audio codecs) are not able to exactly preserve

the positions of the various sources within the auditory scene or they

may even discard the spatial information altogether if the available

data rate is too small. Since the fidelity of this spatial information

is not explicitly considered in PEAQ, this may lead to faulty quality

estimates.

2. EXTENDED PEAQ MEASURE FOR BINAURAL

SIGNALS

The proposed approach is an add-on to the PEAQ model which con-

sists of five additional parameters that are derived from a binaural

model and a subsequent clustering approach to represent the spatial

properties of the signals. This setup allows to exploit the capabilities

of PEAQ while simultaneously improving the performance for use

cases in which the spatial scenario has a significant impact on the

perceived quality. The approach is illustrated schematically in the

Figure 1. As can be seen from the figure, the non-linear mapping of

the PEAQ output and the spatial parameters onto an overall quality

measure is realized by means of a trained NN using an extensive lis-

tening test. The newly developed measurement will be denoted as

advanced ODG (AODG) in the following.

PEAQ

Fig. 1. System overview of the novel quality measure
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2.1. Binaural model and clustering approach

A short review of the content of [7] is given here to introduce the

necessary quantities for the following considerations. The binaural

hearing model is based on the model of [14] and features the exten-

sions of [15, 16] along with a novel frequency and delay weighting

to calculate the correlogram ψ(λ, τ) for every audio signal. The cor-

relogram is the output of the hearing model part and a representation

of the temporal structure of the correlation between the two ear sig-

nals. The two dimensions of the correlogram are the frame index λ

and the internal delay τ which represents the index of the interaural

crosscorrelation.

Local maxima in the two-dimensional correlogram are grouped

by a k-means clustering algorithm to identify clusters (i.e., sources)

and a new refinement step was proposed in [7] to reduce the prob-

ability of overestimation of the number of sources P. The clusters

consist of multiple points in the λ-τ -plane grouped around the cen-

troid µi(λ, τ) of the cluster i. Both an estimate Qi of the spatial

position of the source and a regression curve qi(λ) are calculated for

every cluster. The regression curve is a representation of the move-

ment of the source over the length of the signal.

2.2. Spatial quality parameters

While many parameters can be calculated based on the hearing and

cognitive model [7], most of the spatial information can already be

extracted by a few well-chosen parameters. Having too many pa-

rameters also increases the risk of overfitting the quality measure to

the available training data which is always limited due to practical

constraints. Through analysis of a preliminary listening test, five pa-

rameters could be identified which provide a good representation of

the spatial properties:

• Mean difference of correlograms The average difference

between the correlograms of the reference signal and the de-

graded signal is determined according to:

p1 = Eλ {Eτ {|ψref(λ, τ)− ψdeg(λ, τ)|}} (1)

• Mean difference of regression curves This parameter is cal-

culated as the average of the absolute values of the difference

between the regression curves for sources in the reference sig-

nal and regression curves for sources in the degraded signal.

p2 = Ei {Eλ {|qi,ref(λ)− qi,deg(λ)|}} (2)

• Mean difference of estimated source positions The average

of the absolute values of all the differences between the esti-

mated spatial source positions in the reference signal and the

degraded signal is used as the third spatial parameter:

p3 = Ei {|Qi,ref −Qi,deg|} (3)

• Average difference of cluster centroids The average of the

absolute values of the differences between the cluster cen-

troids of the reference signal and the degraded signal is cal-

culated as follows:

p4 = Eλ {Eτ {|µi,ref(λ, τ)− µi,deg(λ, τ)|}} (4)

• Difference between the widths of the auditory events This

parameter takes the difference in the width of the sources be-

tween the reference signal and the degraded signal into ac-

count. The width Bi of a source is determined from the in-

ternal delays τi that belong to this source (i.e., cluster i) as

follows:

Bi = |max (τi)− min (τi)| (5)

The final spatial parameter is determined as the average of the

changes in width of the sources:

p5 = Ei {Bi,ref −Bi,deg} (6)

From these parameters, the spatial degradation in comparison to the

reference signal can be measured instrumentally. Increasing values

for these parameters indicate quality degradation.

3. MAPPING PARAMETERS TO AODG

Even though the target of the proposed method is to remove listening

tests from the development process, it is of great importance that

instrumental measures correctly include human perception. Hence

they are trained based on the results of a suitable listening test.

3.1. Design of the listening test

The main focus during the development of AODG was the overall

audio quality while specifically taking degradation with respect to

the spatial signal properties into account. In order to have a usable

instrumental measure, it is necessary to tune the model parameters

to human perception. A listening test as recommended in [1] was

conducted which is described in the following.

The test that was used in this development is a degradation cat-

egory rating (DCR) test. In this test type, every participant gets to

hear two signals:

• a reference signal of high quality and

• a degraded signal.

It is known to the participant which signal is the reference and the de-

graded signal, respectively. The test material is composed of speech

and music signals containing fixed as well as moving sources. Dif-

ferent types of degradations (e.g., various codecs or a complete re-

moval of all spatial properties by downmixing) were used to generate

a meaningful set of test items.

The rating scale for this test consists of five rating levels accord-

ing to [1] which can be found in Table 3.1. Since standard PEAQ

Rating level rDCR Degradation is

5 inaudible

4 audible but not annoying

3 slightly annoying

2 annoying

1 very annoying

Table 1. Rating scale for the DCR test

utilizes a rating scale of 0 to −4, the rating levels are adjusted by

r = rDCR − 5.

The listening test was conducted in a quiet studio booth with

very little reverberation. The test signals were reproduced by a cal-

ibrated combination of a digital equalizer (Head Acoustics PEQ V)

and a headphone (Sennheiser HD 600). In total, twenty listeners

participated in the listening test that consisted of 50 test items per

participant. A preliminary training phase with signals similar to the

test signals was included before the test started.

3.2. Model Calibration

The crucial part in any instrumental quality measure is the mapping

between parameters that are calculated from the audio signals and
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the quality estimate. This mapping is realized (as in standard PEAQ)

by an NN which consists of a feed-forward structure with an input

layer with six neurons for the five spatial parameters p1 to p5 (cf.

2.2) and the output of standard PEAQ, one hidden layer consisting

of ten neurons, a single output neuron and two bias units.

All neurons are connected by weighted edges so that every neu-

ron can be characterized by its input and output edges and by its

activation behaviour. This activation behaviour is modeled as a sym-

metrical sigmoid function on the sum of the weighted input values:

tansig (x) =
2

1 + e−2x
− 1 (7)

The reason for this choice is the fact that this function can be easily

differentiated which is a necessary prerequisite for the applicability

of many learning rules [17].

The NN needs to be trained first, this is done in a supervised

manner by the Levenberg Marquardt method which is a very efficient

method for small networks that converges comparatively quickly. It

is described extensively in [18]. The training process can be summa-

rized by the following steps:

1. Initialize the weighting factors randomly.

2. Pick 34 of the 50 signals from the listening test randomly

and in random order. The results of the listening test were

averaged over all participants before training.

3. Let the NN calculate the output for the current weighting fac-

tors.

4. Modify the weighting factors and bias units by means of the

learning algorithm in order to minimize the mean squared er-

ror between the output of the NN and the results of the listen-

ing test.

5. Control the learning process by the associated validation al-

gorithm continuously and stop the learning process if no fur-

ther gains are to be expected. This control inherently also

helps to minimize the risk of overfitting.

The 16 signals that were not chosen for training are used for a later

evaluation of the performance of the model.

This training regime has a disadvantage that has to be men-

tioned: The best neural network can only be determined after all
(

50

34

)

= 4.92 · 1012 possible combinations of training and evaluation

signals are tested. As a reasonable compromise between quality and

complexity, 2000 different sets of combinations were used to train

2000 NNs. Out of these NNs, the network with the highest correla-

tion with the results of the listening test and the lowest mean square

error was chosen.

Overfitting is an issue that can arise when training neural net-

works with limited amounts of training data. Due to the maximum

length of a listening test that does not lead to major discomfort for

the participants, the training data in this setup is limited to 50 sig-

nals of which a third can not be used for training since it is necessary

for evaluation purposes. An additional criterion is introduced that is

specifically tailored to this application and should help in minimiz-

ing the risk of overfitting: Already in the development of standard

PEAQ, a certain confidence interval was specified to define the al-

lowed deviation between estimated and true quality, cf. Fig. 2. The

distance between quality estimates that are outside of the confidence

interval and the confidence interval itself shall be minimized as well.

All input parameters are normalized to values between −1 and

+1 for the training process. The normalization factor is determined

based on more than 1300 simulations for different signals and dif-

ferent signal processing systems. The maximum value for every pa-

rameter was calculated along with the 90th percentile (Q.90). These

values are collected in Table 2.

Parameter Maximum Q.90

p1 12, 05 4, 61
p2 1, 25 0, 39
p3 1, 36 0, 41
p4 1, 26 0, 29
p5 1, 37 1, 14

Table 2. Maximum and 90th percentile of the input parameters

Every parameter is then normalized according:

f (pi) =

{

pi
Qi,.90

, |pi| < Qi,.90

sign(pi) ·Qi,.90, |pi| ≥ Qi,.90

(8)

The clipping to the 90th percentile reduces the impact of outliers and

leads to a more generalized model.

After determining the best NN according to the presented tar-

gets, it can then be evaluated with the remaining 16 signals that were

not used for training. This evaluation is done in the next section.

4. EVALUATION OF THE PROPOSED QUALITY

MEASURE

The comparison of the novel quality measure with PEAQ, the basis

for the development, can be done based on different criteria:

• The correlation ρ between the quality estimate and the results

of the listening test

• The mean square error RMSE of the estimation compared to

the results of the listening test.

• The coefficient of determination R2 is a measure for the abil-

ity of the model to generalize and approximate the true rela-

tionship between the input parameters and the estimated qual-

ity. Possible values for this measure are between 0 and 1, with

higher values indicating a higher quality. The coefficient of

determination is calculated from the results r(i) of the lis-

tening test, their average r̄(i), and the quality estimates r̂(i)
as

R
2 = 1−

∑50

i=1

(

r(i)− r̂(i)
)2

∑50

i=1

(

r(i)− r̄(i)
)2

(9)

• The number of outliers Ndout with respect to the previously

defined confidence interval.

With these quality measures, a comparison of PEAQ and the

new quality measure can be carried out. This comparison is done

with those signals that were not used for training the NN. In the

diagrams, all 50 signals are depicted to get a better impression of the

performance of PEAQ in these cases but the signals that were used

for training are clearly marked to also allow for a quick overview on

the performance of the new quality measure in cases that were not

included in the training process.

In the Fig. 2, the results when using standard PEAQ can be

seen. A perfect instrumental quality measure would lead to having

all individual data points on the dashed main diagonal. The positive

that can be taken from this is the fact that most of the markers are
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Fig. 2. Scatter plot of listening test results and ODG values accord-

ing to PEAQ

within the confidence interval and that there are no major outliers

to the right of the confidence interval, i.e., there are no cases for

which PEAQ strongly overestimates the quality of the signals. On

the other hand, there are numerous cases of strong underestimation

of the signal quality which can be seen as the various points in the

top left part of the diagram.

The results for the proposed AODG measure that explicitly takes

spatial properties into account are depicted in Fig. 3. It can clearly

be seen that including the spatial parameters leads to a significantly

stronger correlation between the results of the listening test and the

quality estimates of the instrumental measure. The number of out-

liers outside of the confidence interval is very small and even these

outliers are very close to the confidence intervals.

As a more formal and clearer comparison of the performance

of both standard PEAQ and the proposed instrumental measure, the

aforementioned criteria are calculated for both measures and col-

lected in Tab. 3.

`
`

`
`

`
`

`
`

`
`̀

Criterion

Measure
PEAQ AODG

AODG (Test

Data Only)

ρ 0.704 0.971 0.954
RMSE 1.067 0.322 0.497
R2 0.179 0.942 0.898
Ndout 40% 6% 12%

Table 3. Comparison between PEAQ and the proposed instrumental

measure

All criteria illustrate the improved performance of the proposed

instrumental measure compared to standard PEAQ. Especially the

column of values that are calculated only for the signals that were

not used for training the model is important for quantifying the per-

formance of AODG. These values and the high coefficient of deter-

mination clearly indicate that the measure will perform accordingly

for other test cases and signals.

As an example, a binaural piece of music (consisting of a piano,

a violin and a trumpet playing from different directions) is trans-

mitted by MPEG-1 layer 3 (MP3) [19] and parametric stereo [20].

Both systems are used at configurations that will not lead to a re-
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Fig. 3. Scatter plot of listening test results and AODG values accord-

ing to the proposed quality measure

ally good transmission quality, but the decisive difference between

the two coding systems is that parametric stereo explicitly transmits

and reconstructs spatial parameters. This difference leads to a more

natural and consistent spatial impression. This example was also in-

cluded in the listening test, where the quality for the transmission

with the MP3 system in this configuration was identified as quite

bad while the transmission with parametric stereo is still acceptable

for this signal. The results for both transmission systems and both

instrumental quality measures are collected in Tab. 4 along with the

results of the listening test.

h
h

h
h

h
h

h
h
h

h
h

h
hh

Measure

Transmission system
MP3 parametric stereo

PEAQ −3.5 −3.8
AODG −2.9 −1.4

Listening Test −3.1 −1.4

Table 4. Instrumental quality measures and listening test results for

different transmission systems

It is obvious that while both standard PEAQ and the AODG

correctly indicate that the transmission quality of the MP3 system

in this configuration is not good at all, only AODG is able to cor-

rectly identify the improved subjective quality of the transmission

with parametric stereo.

5. CONCLUSION

An extension to PEAQ was presented which makes use of five pa-

rameters that are derived from a recently proposed binaural hearing

model. These parameters provide a compact description of the sig-

nal properties that are important for spatial perception. The exten-

sion follows the basic principle of PEAQ by calculating these pa-

rameters and then mapping them onto the quality measure by means

of a neural network. The inclusion of spatial information into the

instrumental quality measurement leads, in contrast to PEAQ, to a

consistently high correlation between the instrumental measure and

a listening test.
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