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ABSTRACT

This paper focuses on the problem of Linear Prediction (LP) con-
strained by sparse residuals. After reformulating the problem to find-
ing the largest linear correlated strict subset in a given vector set, a
greedy method is proposed to determine the support of the sparse
residuals iteratively by testing each entry with respective temporary
prediction error. The greedy method is then simplified to reduce
computational cost. Compared with reference algorithms and con-
ventional LP model, the proposed methods are tested in the speech
coding scenario. Experiment results demonstrate that the proposed
greedy methods work well and suggest that LP with sparse residuals
provides accurate estimation, and is much practical in the scenarios
that more bits are allocated for coding residuals.

Index Terms— Linear prediction, sparsity, sparse residual,
greedy algorithm, speech coding, quantization, the largest linear
correlated strict subset.

1. INTRODUCTION

Linear Prediction (LP) model [1, 2] has been well applied in nu-
merous speech applications [3]. For example, many speech coding
standards are developed based on Code-Excited Linear Prediction
(CELP) [4, 5]. In such applications, the speech signal is assumed
to be modeled as the output of an all-pole filter. It is further sup-
posed that the all-pole filter varies rather slowly in short time period
and the excitation is a pulse sequence, a pseudo-random noise, or
their combinations. Consequently, Least Square (LS) minimization
in the excitation (or the residual) domain is adopted to estimate the
filter coefficients first, and then the excitation or prediction residual
is produced.

At the decoder side, the synthetic speech is generated from the
all-pole filter excited by the LP residuals, while the quantized filter
coefficients and the residuals are received from the encoder side. To
yield synthetic speech with high quality and to avoid the nonlinear
effect of quantization, the quantization is performed in a closed-loop
synthesis approach of searching in a codebook by LS minimization
in the perceptually weighted speech domain. In other words, LP
based speech coding is conducted by finding an all-pole filter and
a pulse sequence in respective codebook that the decoder may use
them to synthesize a signal sounds like the original speech.

Since 1980s, there had always been an attempt to apply different
criteria other than LS minimization to estimate the all-pole filter co-
efficients more accurately or robustly[6, 7, 8, 9, 10, 11, 12, 13]. Most
of them are based on lp norm constraint, where p is equal to or less
than 1, to generate sparse prediction residuals. Accompanying the
popular Compressive Sensing (CS) [14] and the hot topic of sparse

recovery, LP with sparse constraint has attracted much attention in
recent years.

In this paper, different from available algorithms, the greedy
approach is adopted for the first time to solve the problem of LP
with sparse residuals (LPSR). In section 2, the sparse constrained
LP problems are introduced through a brief review of their evolu-
tions. In section 3, two greedy algorithms are proposed to solve
LPSR problem, which is formulated to a problem of finding the
largest linear correlated strict subset in given vectors. In section 4 the
sparse constrained LP problem is readily casted into the CS model
and can be solved by standard sparse signal recovery algorithm. The
experiments are conducted in section 5. The proposed algorithms are
verified to behave well in the real speech scenario. Furthermore, it is
found that the sparse constrained LP works better than conventional
LP in moderate rate speech coding scenario, where more bits could
be allocated to represent residuals. The conclusion goes in section 6.

2. LINEAR PREDICTION WITH SPARSE CONSTRAINTS

Let’s define the LP model as

sn =

F∑
k=1

aksn−k + rn, (1)

where sn, rn, ak, and F denote the speech signal, the prediction
residual, and the all-pole filter coefficients and order, respectively.
The first milestone of linear prediction by l1 minimization, i.e.

{âk} = arg min
∑
n

|rn| (2)

is placed by Denoel and Solvay before 1985 [6]. Their motivation is
to provide a robust LP estimator, as well as to preserve the pulse-like
entries in the residual signal as large prediction errors. They adopted
the lattice filter structure and modified the Burg algorithm with l1
criterion to generate a stable all-pole filter. The algorithm was fur-
ther improved by means of orthogonal transformation [7]. Nearly
at the same time, Nammone, Weng, and Gay [8] studied the same
model and solved (2) by simplex method of linear programming.
Consequently, Lansford and Yarlagadda described some experimen-
tal results using lp(1 ≤ p ≤ 3) normed models in the speech coding
scenario[9]. They solve the problem by the residual steepest descent
algorithm based on their previous work on lp deconvolution [15].

Besides the lp constraint approach, Lee tried to minimize the
sum of appropriately weighted residuals [10], i.e.

{âk} = arg min
∑
n

ρ(rn), (3)
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where the weight function ρ(·) is selected to give more weight to
the smaller residuals while less weight to the large residuals, which
are in small portion. Their results demonstrated the new formulation
provided a more efficient and less biased estimate for the prediction
coefficients, compared to conventional LP.

Later in the 1990s, Namba, Kamata, and Ishida [16] further stud-
ied (2) and demonstrated experimentally that the speech spectrum
envelop derived from l1 estimator is changing smoothly with regard
to time, while that from l2 estimator changes sharply. The second
milestone was placed by Murthi and Rao in 1998 [11]. They tried
to generate sparse residues explicitly suiting for codebook excitation
with an error criterion

{âk} = arg min lim
p→0

∑
n

|rn|p (4)

and solved by an Iteratively Reweighted Least Squares algorithm[12].
This is the first appearance of lp (p < 1) norm minimization in LP
model. It can be readily accepted that the sparsity of the resid-
ual signal is put at the first place in (4) by approximate l0 norm
minimization.

After the rising and flourishing of Compressive Sensing and
sparse recovery, Giacobello, Christensen, Murthi, Jensen, and Moo-
nen did a series of solid works [17, 18, 13] on this area and named
Sparse Linear Prediction (SLP) as

{âk} = arg min |{rn}|+ γ|{ak}|, (5)

where γ is a factor to balance the two parts. Please notice that both
short term (formant filter) and long term (pitch filter) are combined
together as the all-pole filter model, whose inverse is obviously a
sparse filter. They solved the problem by iteratively reweighted l1-
norm minimization of the residual and the coefficients. Furthermore,
they have successfully built several speech codecs, which exceed
some commercial speech coding standard in various tests [13].

I will end this brief review by recalling some more early ref-
erences. Least squares estimation provides a maximum likelihood
(ML) estimate in the presence of Gaussian noise, while l1 minimiza-
tion is the ML estimate when the noise is Laplacian. Furthermore,
maximum a posteriori (MAP) estimation can be seen as a regular-
ization of ML estimate. Lim and Oppenheim had established a theo-
retical foundation for the estimation of an all-pole model parameters
by MAP criterion in the scenario of speech degraded by background
noise[19], which is the earliest work I found that contained a well-
defined LP model with rather general error criteria.

3. THE PROPOSED GREEDY ALGORITHMS

This work will only focus on the sparsity in residual domain, other
than the prediction coefficients. LP model of (1) can be rewritten in
a matrix multiplication formulation

sn sn−1 · · · sn−F

sn−1 sn−2 · · · sn−F−1

...
...

...
...

sn−L+1 sn−L · · · sn−L−F+1




1
−a1

...
−aF

=


rn
rn−1

...
rn−L+1

 , (6)

whereL denotes the frame length. LP problem is to find a coefficient
vector a = [1,−a1,−a2, · · · ,−aF ]T, which makes the residual
vector r = [rn, rn−1, · · · , rn−L+1]T satisfy certain optimization
constraint.

Particularly, if r is supposed to be a nearly sparse vector to play
the role of a multi-pulse-like excitation in speech synthesis, one may
specify the model in (6) as

Sa = rs + rn, (7)

where S denotes the matrix contains speech samples on the left
side of (6), rs and rn are, respectively, the exact sparse component
and dense noise component of the residual. Consequently, LPSR is
formed as an optimization problem,

â = arg min ‖Sa− rs‖2, s.t. ‖rs‖0 = K, (8)

where K is a predefined number of non-zero entries.
Furthermore, two assumptions are adopted to clearly define the

sparsity of the exact sparse residual vector, which will be used in the
following analysis. Assumption 1: the magnitudes of all non-zero
entries in the exact sparse residual vector are larger than those in the
noisy residual vector. Assumption 2: the number of non-zero entries
in the exact sparse residual vector is much less than the vector length.

In this work, a first-greedy-then-LS approach is adopted to solve
(8). Denoting the support set of the exact sparse residual by U , one
may define those rows in speech matrix S and entries in noisy resid-
ual rn corresponding to the index set U by SU and rnU , respectively.
If one has an estimate of the support of sparse residual, i.e. Û , then
the prediction coefficients can be calculated by LS minimization sub-
ject to those rows, which are not in Û , in (7),

â = arg min
∥∥∥rnÛC

∥∥∥
2

= arg min
∥∥∥SÛC

a
∥∥∥
2
, (9)

where ÛC = {1, 2, · · · , L}\Û . The optimality of (9) can by readily
explained from another point of view as follows. There are L linear
measurements of F unknowns, where L� F . If one further knows
some measurements containing strong noises which correspond to
the support set Û , then the optimal estimate should be the LS solu-
tion from the rest of measurements, which are less noisy. The above
analysis also suggests that LPSR could provide a more accurate es-
timate than conventional LP.

Consequently, the essential of LPSR is to determine the support
set of the exact sparse residual. By revisiting (7) and utilizing As-
sumption 1, one has∣∣∣sTi a

∣∣∣� ∣∣∣sTj a
∣∣∣ , ∀i ∈ U, ∀j ∈ UC (10)

where sTi = [sn−i+1, sn−i, · · · , sn−F−i+1] denotes the ith row in
speech matrix S. Focusing on the two vector sets SU = {si}i∈U and
SUC = {si}i∈UC , one may readily accept from (10) that, comparing
to those in the former set, the vectors in the latter one nearly locate in
a hyperplane, to which a non-zero vector a is vertical. Specifically, if
there is no noisy residual in LPSR model, i.e.

∣∣sTj a
∣∣ = 0, ∀j ∈ UC,

the prediction vector a is exactly vertical to the hyperplane that SUC

composes.
Let’s now adopt Assumption 2, which means that the cardinality

of SU is rather small comparing to that of SUC . Then it is glad to
recognize that almost all vectors in S = {si} compose a hyperplane,
and the task is to pick those far from the mentioned plane. Please
refer to Fig. 1 for a visualization.

Therefore, the problem is reformulated as: for a given vector set
S, one tries to find a non-zero vector a that is orthogonal to most of
the vectors in S, or equivalently, one tries to find the largest linear
correlated strict subset SUC ⊂ S.

Based on the above analysis, a greedy algorithm to find the sup-
port set of the sparse residual is proposed in Table 1. The algorithm
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Fig. 1. A geometric interpretation to LPSR problem.

Table 1. The Proposed Greedy Algorithm
Input: sj(j = 1, 2, · · · , L), K
Initialization: Û

(1)
C = {1, 2, · · · , L}

Output: Û
(K)
C

For: i = 1, 2, · · · ,K
Evaluate:

ε
(i)
k = mina

∑
j∈Û(i)

C \k
‖sTj a‖2, ∀k ∈ Û (i)

C

Choose:
t(i) = arg min

k∈Û(i)
C

ε
(i)
k

Remove:
Û

(i+1)
C = Û

(i)
C \t

(i)

End

iteratively estimate the complementary set ÛC. In the ith iteration,
the algorithm eliminates the index t(i), the vector of which is the
most unlikely to lie in the hyperplane, from the current complemen-
tary set Û (i)

C . The likelihood comes from the following observation.
If k ∈ U , the temporary complementary set S

Û
(i)
C \k

shall behave

more like a hyperplane than S
Û

(i)
C

, one could be easier to find a pre-

diction vector a nearly vertical to all vectors in the temporary set.
In other words, the prediction error should be smaller than the case
that k ∈ UC is temporarily removed. Therefore the prediction error
ε
(i)
k for a specific removed k is selected to evaluate the likelihood of
k ∈ U : the smaller ε(i)k is, the more likely k is to be in U . Please
refer to Table 1 for detailed description.

The computational cost of the proposed algorithm isO(KLF 2+
αKF 3), where α is a factor. Please notice that there are L simi-
lar F × F matrix need be inverted in every Evaluate step, where
Sherman-Morrison formula [20] is adopted to reduce the multiplica-
tion times from O(LF 3) to O(LF 2 + αF 3).

To further reduce the computational cost, a simplified greedy
algorithm is proposed in Table 2 to balance the computation cost
and performance. In this algorithm, the candidates of U are selected
at once other than in K iterations, based on the likelihood defined
exactly the same as in Table 1. Consequently, the computational
cost is reduced to O(LF 2 + αF 3).

Relation to prior work: As far as I know, this is the first ap-
pearance of greedy approach to solve LPSR problem. Simulations
verifies that its performance exceeds the reference algorithms.

4. LPSR AND COMPRESSIVE SENSING

The renaissance of LPSR is closely relevant to the boom of CS and
sparsity related topics. The connection between LPSR and CS has

Table 2. The Simplified Greedy Algorithm
Input: sj , (j = 1, 2, · · · , L), K
Initialization: ÛC = {1, 2, · · · , L}
Output: ÛC

Execute:
Evaluate:

εk = mina

∑
j∈ÛC\k ‖s

T
j a‖2, ∀k ∈ ÛC

Choose:
ÛC = {1, 2, · · · , L} − {t1, t2, · · · , tK},
where εti is the ith smallest in set {εk}.

already been built in [13]. However, this work wants to emphasize
a direct approach, which has been mentioned by Candès just as CS
appeared [21]. Let’s rewrite (1) in matrix formulation as

sn
sn−1

...
sn−L+1

=


sn−1 · · · sn−F

sn−2 · · · sn−F−1

...
...

...
sn−L · · · sn−L−F+1



a1
a2
...
aF

+


rn
rn−1

...
rn−L+1

 , (11)

or briefly
s = S̄ā + r. (12)

The Toeplitz matrix S̄ is generally of full rank and S̄T has a
nullspace with nullity L − F . One picks M (M ≤ L − F ) or-
thogonal vectors {hi}1≤i≤M in null(S̄T) and constructs a matrix
H = [h1,h2, · · · ,hM ]T. By left multiplying H to the both sides
of (12) and applying HS̄ = 0, one has

Hs = Hr. (13)

By defining y = Hs, LPSR problem of (12) changes to

r̂ = arg min ‖r‖0, s.t. y = Hr, (14)

which is a standard sparse recovery problem in CS. There are many
algorithms to solve (14), two of which will be tested in next sec-
tion. Considering the problem of whether L − F measurements is
enough to recover the desired non-zero residuals [22], one may try
to compare the two approaches of solving a LPSR problem, or its
equivalence in CS. However, this topic beyond the scope of this pa-
per.

5. SIMULATION RESULTS

The proposed greedy algorithms (Greedy1 and Greedy2) are tested
and compared with the reweighted l1 algorithm (Reweight)[13] and
two sparse recovery algorithms, OMP [23, 24] and ZAP [25]. Fur-
thermore, the conventional LP of LS minimization is also conducted
for comparison.

The test signal is a male speech in English with sampling rate
8KHz. The frame length and the all-pole filter order are 160 and
10, respectively. Totally 2500 frames including voiced frame and
unvoiced frame are processed separately. For each frame, the sup-
port set of the residual vector is estimated by all algorithms, while
the long term correlation in voiced frame is firstly removed by pitch
estimation. To the reference methods, which do not output resid-
ual support, the residual is calculated and then the locations of the
K largest entries are selected as Û . Then the prediction coeffi-
cient â is estimated based on LS minimization on support ÛC. The
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Fig. 2. MSEs in linear representation form v.s. non-zero residual
numbers, where LS result is highlighted.

synthetic speech is the output of the estimated all-pole filter ex-
cited by K sparse residuals. To be noticed, the perceptually weight-
ing is not considered for simplicity. Therefore, mean squared er-
ror between the synthetic signal and the original speech, MSE =
20 lg(‖x− x̂‖2/‖x‖2), is used for evaluation. In order to look into
the problem and provide comprehensive comparison, several kinds
of synthetic speeches are adopted in two experiments.

In the first experiment, the synthetic signal is generated by a
linear representation formula of (11), where a and r are replaced
by their estimates, while the historic speech vectors are from the
original speech. Obviously this setting is unrealistic, because the
original speech does not exist in the decoder side. However, this is
the only approach that satisfies the optimization model of LPSR of
(8) and (9). MSEs with respect to the predefined non-zero resid-
ual number are plotted in Fig. 2. There are two clusters of curves
and MSEs of the voiced frames are much lower that those of the
unvoiced frames, which verifies that voiced frame fits LPSR model
better, while the unvoiced speech is much more unpredictable. For
both clusters, MSEs decrease as non-zero residual number increases,
which reveals that the LP residual of speech is not exactly sparse. In
each cluster, MSE of conventional LP is the largest, as verified that
sparse residual constraint could improve the accuracy of LP model.
Furthermore, the proposed greedy methods, especially Greedy1, be-
haves pretty well and its MSE is the lowest in both voiced and un-
voiced cases.

The second experiment is to provide more insight to LPSR prob-
lem in a more realistic scenario of speech coding. The non-zero
residuals are estimated using Analysis by Synthesis (AbS) technique
and then quantized before exciting the estimated all-pole filter. Each
non-zero residual is quantized by 1, 3, or 5 bits. MSEs of the voiced
and unvoiced frames are plotted, respectively, in Fig. 3 and Fig. 4,
with respect to different predefined non-zero residual number. Some
observations can be obtained from both figures. First, the curves are
clustered by numbers of quantization level, but 3-bit and 5-bit quan-
tization are rather close. Second, in 3-bit and 5-bit quantization case
of both voiced and unvoiced frames, conventional LS minimization
results in the largest MSE among all solutions, especially for the
voiced frames, and the proposed greedy algorithms behave pretty
well. Furthermore, one can read that 5-bit quantization with LP
is not as good as 3-bit quantization with LPSR, which proves that
LPSR model provides better estimate and may save bits. Finally,
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Fig. 3. MSEs of voiced synthetic speech with AbS v.s. non-zero
residual numbers, where LS result is highlighted.
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Fig. 4. MSEs of unvoiced synthetic speech with AbS v.s. non-zero
residual numbers, where LS result is highlighted.

in 1-bit quantization case, however, it is hard to say whether LPSR
model is better than the conventional LP. One should not be surprised
by this result, considering that after such strong distortion in residual
domain, the demand for an accurate all-pole filter is down. Combin-
ing the above observations, one may readily accept that LPSR model
is better for moderate speech coder, in which more bits are provided
for coding residuals.

6. CONCLUSION

In this paper, LPSR problem is reformulated as finding the largest
linear correlated strict subset in a given vector set. A greedy ap-
proach is proposed to pick out those outliers iteratively based on a
likelihood represented by temporary prediction error. The proposed
methods are tested in the speech coding scenario and compared with
conventional LS method, a recent proposed l1 reweighted method,
and two sparse signal recovery algorithms, by directly casting LPSR
problem in the CS framework. Experiment results demonstrate that
the proposed greedy methods work well. It is further shown clearly
that LPSR model is more practical in the speech coders that more
bits are allocated to the residuals.
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