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ABSTRACT

Reproducible evaluation of dynamic and nonlinear systems is a non-

trivial problem. However, automotive speech processing algorithms

such as hands-free systems have to be tested under numerous time-

variant conditions in a repeatable fashion. The current way of gen-

erating time-varying echo paths, as described in ITU-T Recommen-

dation P.1110, relies on a rotating reflecting surface in a car interior,

which lacks both flexibility and reproducibility. We propose an auto-

motive loudspeaker-enclosure-microphone (LEM) system identifica-

tion approach based on the normalized least mean squares (NLMS)

algorithm and a perfect sweep excitation signal. Time-variant simu-

lations of a nonlinear system model show a significant improvement

of error signal attenuation by over 7 dB, compared to a white noise

excitation, also confirmed by automotive measurements. We present

the necessary steps to identify dynamic automotive LEM systems

to obtain traces of impulse responses for later reproducible tests of

automotive hands-free systems. The method has been proposed to

ITU-T standardization in focus group (FG) CARCOM.

Index Terms— NLMS system identification, automotive hands-

free system, perfect sweep, simulated nonlinear system, IR database

1. INTRODUCTION

Evaluation of dynamic and nonlinear systems is a challenging task.

The generation of time-variant automotive echo paths according

to ITU-T Rec. P.1110 [1] by rotating a reflecting surface suffers

from a lack of flexibility, reproducibility, and time efficiency. For

a proper evaluation of speech enhancement algorithms, e. g. [2–6],

however, a flexible and reproducible way of processing test speech

data over a time-variant loudspeaker-enclosure-microphone (LEM)

system model would be desired. Further development of automotive

hands-free systems would highly benefit from the availability of

exemplary dynamic impulse response traces from real automotive

environments, provided by a database included in a new Recommen-

dation to allow for comparability amongst different measurements

and labs. This database would enable the generation of automotive

test speech data, representing numerous dynamic conditions.

Whereas system identification [5, 7] is a task well understood,

identification of dynamic systems is still a research topic of high

demands [8–10]. For this purpose oftentimes adaptive filters are

employed, whereas LMS-type algorithms convince with a lower

numerical complexity compared to affine projection, recursive least

squares, or Kalman algorithms [3, 11]. Excitation signals may

range from noise(-like) sequences [12] over sweep signals [13],

with higher energy efficiency, to perfect sequences [14–18] with an

impulse-like autocorrelation function. In combining the advantages

of the latter two, normalized least mean squares (NLMS) system

identification with perfect sweep (PS) excitation [19, 20] shows

promising results.

In our methodology we carry on Antweiler et al.’s work [20] by

employing a dynamic acoustic room simulation with nonlinear pro-

cessing. This accounts for the fact, that good system identification

results considerably rely on the achievable signal-to-observation-

noise ratio (SNR). The SNR strongly depends on the chosen exci-

tation signal and its induced loudspeaker nonlinearities [13, 21, 22]

at high volume. We underpin our simulation results with automotive

measurements, revealing a high consistency, and present the neces-

sary steps to acquire a dynamic impulse response trajectory for an

automotive LEM impulse response database which can be used to

perform reproducible, flexible, and time-efficient evaluations of au-

tomotive hands-free systems in simulated dynamic conditions.

The organization of the paper is as follows: Sec. 2 describes a

discrete-time model for simulation of static and dynamic LEM sys-

tem identification. In Sec. 3 simulation results are underpinned with

dynamic automotive measurements, exemplarily presenting the nec-

essary steps to acquire a dynamic impulse response trajectory. We

then conclude our findings in Sec. 4.

2. IDENTIFICATION OF

A SIMULATED NONLINEAR LEM SYSTEM

This section introduces a simulated nonlinear LEM system and the

necessary steps for its identification. This simulated setup will serve

as a ground truth to reliably evaluate the later proposed automotive

dynamic LEM system identification process.

2.1. System model

Our system model (cf. Fig. 1) is based on the well-known setup

of a system identification process, where the excitation signal xpnq
with sample index n is radiated over a loudspeaker into the acous-

tic enclosure to be identified—represented as linear time-variant im-

pulse response hpnq “ rh0pnq, h1pnq, . . . , hN´1pnqsT with im-

pulse response length N and transpose operator r¨sT —thus forming

a system output signal dpnq. Superimposed at the microphone with

the observation noise signal npnq the resulting microphone signal

ypnq is subject to subtraction by an estimated system output sig-

nal d̂pnq “ ĥ
Hpnqxpnq, with ĥpnq being an estimated replica

of the linear system hpnq, p¨qH being the Hermitian operator, and

xpnq “ rxpnq, xpn ´ 1q, . . . , xpn ´ N ` 1qsT . The resulting error

signal epnq “ ypnq ´ d̂pnq then is to be minimized by the adaptive
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Fig. 1. Discrete-time model for identification of a time-variant sys-

tem with simulated nonlinear processing (NLP) at the loudspeaker.

filter ĥpnq, in our case by making use of the NLMS algorithm, which

iteratively updates the replica system’s impulse response according

to

ĥpn ` 1q “ ĥpnq ` µpxpnq e˚pnqq{}xpnq}2, (1)

with complex conjugate operator p¨q˚ and step size µ “ 1. The

algorithm operates at a sampling frequency of fs “ 16 kHz.

Since practical realizations oftentimes reveal considerable non-

linear behavior—mostly originating from nonlinearities of the

loudspeaker—a nonlinear processing (NLP) function has been added

to the loudspeaker block of the system model, thus forming a Ham-

merstein system [23]. This NLP is a function of the excitation signal

xpnq and is chosen according to [22, 24] as

f
`

xpnq
˘

“ 1{α arctan
`

α ¨ xpnq
˘

, with α “ 0.0001, (2)

to obtain a smooth saturation curve for higher amplitudes of the ex-

citation signal, quantized with 16 bits.

To evaluate the quality of the identification process, an error sig-

nal attenuation measure Q according to

Qpnq “ E

 

y2pnq
(

{E
 

e2pnq
(

“
p1´βqy2pnq`βE

 

y2pn´1q
(

p1´βqpdpnq´d̂pnqq2`βE

 

e2pn´1q
(

(3)

with β “ 0.99 is used. Wherever possible, the normalized system

distance D according to

Dpnq “ ||hpnq´ĥpnq||2{||hpnq||2 (4)

is used to measure the difference between true and replica impulse

response, both of length N and || ¨ || being the Euclidian norm.

2.2. Excitation signals

The type of excitation signal for a given system identification task

is crucial to achieve a high SNR and—especially for time-variant

scenarios—good tracking abilities to trace even highly dynamic pro-

cesses. Perfect sweeps [19], as well as all perfect sequences [14–17]

in general, are perfect in the sense, that they have an impulse-like

autocorrelation function, thus leading to fast convergence [18].

Design of a PS sequence of length M in the discrete Fourier

transform domain is as simple as follows:

P
`

k
˘

“

"

exp
`

´j4mπk2

{M2

˘

, 0 ď k ď M
2

P˚
`

M ´ k
˘

, M
2

ă k ă M
, (5)

with stretch factor m “ M{2, here set to equal energy distribution.

Filter length and PS sequence length are chosen to N “M “256 to

ensure fast filter convergence whilst still providing good frequency

resolution and guaranteeing periodicity with N “M .

Due to the sweeping character of the PS signal, its perfectness,

and low crest factor, relatively high amounts of energy can be fed
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Fig. 2. Normalized system distance D for a static identification pro-

cess with PS and WN excitation, Ld “ ´26 dBov, SNR “ 30 dB,

and M “ 256. Switch of static impulse responses at t “ 2 s.

(a): without NLP, i. e. f
`

xpnq
˘

“ xpnq; (b): NLP according to (2).
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Fig. 3. Averaged simulated Q-values Q for different excitation sig-

nal types (PS and WN) and output signal levels Ld (measured at the

microphone position). With NLP according to (2).

into the system without severe nonlinear distortions, thus leading

to a high SNR [20]. Additionally, periodic repetitions are possible

without transition artifacts, which further allows to increase the ex-

citation energy. If the system to be identified is undermodeled in

terms of impulse response length, the tail of the estimated impulse

response—cut off after N samples—will be projected as systematic

error at the beginning of the estimated impulse response. This sys-

tematic error appears to be more forgiving in terms of audio degrada-

tion as opposed to an unsystematic error, as it is observed for noise-

like excitation signals (cf. Sec. 2.4 or [5, 18]).

2.3. Static identification

In Fig. 2 a static system identification process according to Fig. 1

is shown, with an impulse response switch taking place at t “ 2 s.

The underlying system—which is without NLP for the loudspeaker

model in case (a) and with NLP according to (2) in case (b)—is

excited with a perfect sweep sequence of length M “ 256 and, al-

ternatively, with white noise of equivalent energy. Subplot (a) shows

that both excitation signals lead to an optimal system distance of

about D « ´SNR « ´30 dB in the converged state. However, con-

vergence is reached for the perfect sweep excitation signal already

after one period of M “ 256 samples fl 16ms, thus representing a

big advantage over the white noise excitation signal with a conver-

gence time of about 150ms. Taking NLP (2) into account, as shown
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Fig. 4. Room acoustic simulation setup of a car’s interior with hands-

free (HF) microphone, a static center loudspeaker, and a rotating

loudspeaker at a radius of 0.3m around the static one, with Φ de-

picting the azimuth angle deviation from the left-most position.

in (b), the final system distance worsens to about ´12 dB for WN

and ´17 dB for PS excitation, thus showing that PS excitation is

more robust against disturbing nonlinearities with still superior con-

vergence time compared to WN excitation.

The observed robustness against nonlinearities becomes increas-

ingly important when higher output signal levels are desired. As

shown in Fig. 3, the benefit of higher Q-values, which are expected

to come with higher energetic excitation, is eminently dependent

on the chosen excitation signal. To prove this, PS and WN sig-

nals have been used to excite the system shown in Fig. 1, includ-

ing NLP according to (2), at output signal levels from ´36 dBov

to ´16 dBov at the microphone. Care has been taken to ensure

SNR “ 30 dB for an output signal level of Ld “ ´26 dBov by

adding white noise at the microphone position, remaining at a con-

stant level of Ln “´56 dBov for all values of Ld. Levels have been

measured according to ITU-T P.56 [25, Ch. 8].

By comparing our simulation results in Fig. 2 and Fig. 3 to real-

world measurements of other labs [20, Fig. 4], a good match seems

to be achieved. Therefore it can be concluded, that typical loud-

speaker nonlinearities can be simulated with an NLP following (2)

and that PS sequences offer a big advantage over WN as excitation

signal in terms of achievable Q-values, given a specific SNR.

2.4. Dynamic identification

A simulated automotive system identification setup is shown in

Fig. 4, resembling a simple cuboidal car interior with typical dimen-

sions (2.9m ˆ 1.5m ˆ 1m) and sound absorption properties. This

setup represents a simulation analogy to the measurement setup

in ITU-T P.1110 [1]. Here the time-variant echo path is realized

by using a modified image method based on [26] to simulate the

time-varying impulse response between a hands-free microphone

at grid position 0.48m ˆ 0.75m ˆ 0.8m and a loudspeaker, ro-

tating at a radius of 0.3m around the position of an imaginary

co-driver (cf. [1]) at 1.05m ˆ 1.1m ˆ 0.8m, if the ordinate is

interpreted as the car’s windshield plane. In order to obtain a very

simple set of ground truth dynamic impulse responses, the impulse

response hdynamicpnq is combined with a static impulse response

hcenter—between the microphone and a second loudspeaker at the

aforementioned co-driver’s position—to become

hpnq “ 0.1 ¨ hdynamicpnq ` 0.9 ¨ hcenter. (6)
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Fig. 5. Simulation results of system identification according to Fig. 4

with PS and WN excitation signals at Ld “ ´16 dBov in terms of

Q-values and system distance D. SNR “ 40 dB. One second of

static (ω “ 0) identification with azimuth angle Φ “ 0˝ and four

seconds of dynamic identification with ω “ 360
˝
{4 s.

This approach is based on the assumption, that most of the sound

energy is conveyed over a static path. The rotation speed of the loud-

speaker is ω “ ∆Φ{∆t “ 360
˝
{4 s, whereas the azimuth angle Φ “ 0˝

describes the leftmost position of the rotating loudspeaker (cf. [1]).

These simulated time-varying impulse responses hpnq serve to

feed the identification algorithm described in Sec. 2.1–2.3, with NLP

according to (2) and a high output signal level of Ld “ ´16 dBov.

In Addition, they constitute the ground truth for the system distance

Dpnq calculation.

It can be seen in Fig. 5 that the results for both excitation sig-

nals nicely coincide with previous results for static identification

(Φ “ 0˝, ω “ 0). Here, PS excitation outperforms WN excitation

by 24 dB in terms of Q-measure (cf. Fig. 3 for Ld “´16 dBov) and

by about 3 dB in terms of system distance values (cf. Fig. 2 (b)).

The dynamic identification process with ω “ 360
˝
{4 s, shown in the

time interval 0 s to 4 s, leads to somewhat worse, angle-dependent Q-

measure values for the PS excitation in the range of 17 dB ă QPS ă
30 dB, still outperforming the Q-measure values for WN excitation

at QWN « 12 dB. Noteworthy are two local maxima in the QPS plot

which correspond to positions of the rotating loudspeaker where it

is geometrically in line with the center loudspeaker and the micro-

phone. Taking a look at the lower subplot, it can be seen that system

distance values show similar minimum values but increased maxi-

mum values compared to the static case for both excitation signals.

3. IDENTIFICATION OF

A REAL AUTOMOTIVE LEM SYSTEM

Having shown the superiority of PS excitation over WN excitation

in a simulated static and dynamic automotive environment, measure-

ments in a car are conducted to investigate the portability of the
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Fig. 6. Car setup with generation of a time-varying echo path accord-

ing to ITU-T P.1110 [1], with hands-free microphone at rear-view

mirror position and four loudspeakers. Azimuth angle Φ “ 0˝ de-

picts an orientation of the reflecting surface parallel to the abscissa.

aforementioned conclusions to real-world applications.

3.1. Measurement setup

System identification measurements have been performed in a Volks-

wagen Touran car, with an interior setup sketched in Fig. 6 (cf. also

Fig. 4). Both excitation signals, PS and WN, were played back

via four internal car loudspeakers and recorded with the hands-free

microphone at rear-view mirror position (grid position 0.48m ˆ
0.75m ˆ 0.8m). The normalized excitation signals were played

back at high volume to achieve a good SNR. In accordance to ITU-T

P.1110 [1] a piece of plywood of size 0.3m ˆ 0.4m was placed at

the co-driver’s seat and rotated with ω « 360
˝
{4 s to generate a time-

varying echo path. The initial position (Φ “ 0˝) of the board hereby

again corresponds to the setup, where its surface is parallel to the

abscissa. The driver’s seat has been occupied.

3.2. Dynamic identification

In the described car setup an identification process of the time-

variant system—created according to ITU-T P.1110, except for

manual rotation of the board—was performed and the result is

shown in Fig. 7. Only Q-values are provided, since now ground

truth is not available to perform system distance measurements.

One second after rotation start, a speed of ω « 360
˝
{4 s was

maintained for four seconds. As it can be seen in Fig. 7, the Q-

measure for WN excitation remains at a rather constant and low

level of QWN « 8 dB, whereas with PS excitation values for QPS

from 15 dB to 26 dB can be achieved. As it already could be as-

sumed based on the simulation results of Fig. 5, these real-world

measurements also show two local maxima in the QPS plot of Fig. 7,

here at about t “ 1 s and t “ 3 s. These maxima positions, though

somewhat misplaced due to the erratic manual rotation, belong to

azimuth angles Φ of the rotating board where again specific geo-

metrical properties are met. As a consequence, a high coherence

between the Q-measure results of the simulation (Sec. 2.4) and the

real-world measurements (here) can be observed.

By convolution of these acquired time-varying impulse re-

sponses hpnq, n “ 0, 1, 2, . . . , of the dynamic system with close-

talk speech signals xpnq, automotive speech signals with a high

resemblance to the original room impression can be simulated. In-

formative subjective listening experiments showed, that impulse
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Fig. 7. Measurement results of system identification according to

Fig. 6 and [1] with PS and WN excitation signals at Ld “ ´16 dBov

in terms of Q-measure values Q. After one second of slow rotation

start four seconds of dynamic identification with ω « 360
˝
{4 s.

responses obtained by PS excitation produced far better convolution

output signals compared to the excitation by WN. For WN exci-

tation, a lot of click noises could be perceived in the convolution

output signals. Furthermore, room impression differed considerably

more as opposed to the PS excitation case.

NLMS system identification simulation and real-world measure-

ments showed that low system distance and high immunity against

nonlinearities can be achieved with periodic PS excitation. There-

fore, this approach—NLMS identification of several time-variant au-

tomotive prototype environments to build up a database for later re-

production of these conditions via convolution in the lab—can be

promoted as particularly suitable, e. g., for inclusion into a future

automotive hands-free system test Recommendation. It would offer

the advantage of high reproducibility and ease of use when avail-

able close-talk speech signals shall be equipped with dynamic au-

tomotive room characteristics of high realism. In so doing, a large

amount of test data can be processed with different settings in the

lab for dynamic automotive impulse responses of various source en-

vironments, without the effort of recording each speech file in the

car individually.

Our methodology of acquiring traces of dynamic automotive im-

pulse responses has been proposed in ITU-T focus group CARCOM

to provide a database of such impulse responses along with a future

ITU-T Recommendation and is currently under discussion.

4. CONCLUSIONS

Generation of time-variant speech material for automotive hands-

free system testing according to ITU-T P.1110 [1] oftentimes does

not lead to satisfying results, due to a lack of reproducibility, flex-

ibility, and time efficiency. Our proposed approach detaches the

dynamic room characteristics from the speech signal’s content by

NLMS system identification with perfect sweep sequences, thus of-

fering a higher degree of abstraction. It represents an advancement

of the state of the art by presenting a realistic automotive time-variant

simulation framework with nonlinear processing, underpinning its

automotive applicability with real-world measurements. By includ-

ing this method into future automotive hands-free system test Rec-

ommendations, a database could be built, allowing users to rely on

numerous predefined dynamic impulse response traces for flexible,

reproducible, and comparable generation of automotive time-variant

test data.
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