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ABSTRACT

In this paper, we describe the “Spoken Web Search” Task, which
was held as part of the 2012 MediaEval benchmark evaluation cam-
paign. The purpose of this task was to perform audio search with au-
dio input in four languages, with very few resources being available.
Continuing in the spirit of the 2011 Spoken Web Search Task, which
used speech from four Indian languages, the 2012 data was taken
from the LWAZI corpus, to provide even more diversity and allow
for a task that will allow both zero resource “pattern matching” ap-
proaches and “speech recognition” based approaches to participate.
In this paper, we summarize the results from several independent
systems, developed by nine teams, analyze their performance, and
provide directions for future research.

Index Terms— low-resource speech recognition, evaluation,
pattern matching, spoken term detection

1. INTRODUCTION

MediaEval 2012’s “Spoken Web Search” task involves searching for
audio content, within audio content, using an audio content query.

The task therefore requires researchers to build a language-
independent audio search systems so that, given a query, they should
be able to find the appropriate audio file(s) and the (approximate)
location of the query term within the audio file(s). The task is
designed so that performing language identification, followed by
standard speech-to-text is possible, but not the easiest solution as
recognizers are typically not available in these languages. The eval-
uation was performed using standard NIST metrics for spoken term
detection [1]. For comparison, participants could also search using
the lexical form of the query, but dictionary entries for the search
terms were not provided. We are not reporting results for this sub-
task in this paper. This way, the results shown here are therefore also
relevant for the processing of languages or dialects for which writ-
ten forms do not exist, which are part of the long tail of languages
spoken in the world nowadays.

2. PRIOR AND RELATED WORK

This task was originally suggested by IBM Research India, and was
initially run using data provided by this group, see [2], with the ob-
jective to be able to go beyond searching through meta-data only
[3]. The 2012 evaluation is a continuation of the 2011 “Spoken Web
Search” (SWS) Task [4]. The 2011 data was made available to 2012
participants as additional development data, although the scoring pa-

rameters had been adjusted to better reflect the intended use case. We
will not report results on this data here.

Recently, there has been great interest in algorithms that allow
rapid and robust development of speech technology for any lan-
guage, particularly with respect to search, see for example [5] for
an alternative approach. Today’s technology has mostly been devel-
oped for transcription of English, with markedly lower performance
on non-English languages, and still covering only a small subset of
the world’s languages. While most minority languages might not
have enough active speakers to justify a strong investment in devel-
oping full speech recognition systems, any speech technology that
can be adapted to them can make a big difference.

This evaluation attempts to provide an evaluation corpus and
baseline for research on language-independent search and transcrip-
tion of real-world speech data, with a special focus on low-resource
languages, in order to provide a forum for original research ideas.
The task is also suitable for young researchers to get started on
speech technologies, and we are currently working on making some
of the systems that were submitted to the 2012 evaluation available
in the “Speech Recognition Virtual Kitchen” [6].

In this paper, we give an overview of the different approaches
submitted to the evaluation, analyze the results, and summarize the
findings of the evaluation workshop [7].

3. DESCRIPTION OF TASK AND DATA

The data used in the evaluation was divided into a development set,
which was made available to participants about 16 weeks before the
evaluation deadline, and an evaluation set, which the participants
received about 8 weeks before the submission deadline. Both sets
contained about 4 hours of audio.

By design, the 2012 “African” development data consists of
1580 audio files (395 per language), taken from the isiNdebele,
Siswati, Tshivenda, and Xitsonga parts of the LWAZI corpus [8],
and 100 example queries (25 per language) in these languages with
overall similar characteristics to the 2011 “Indian” data [9, 4].

The evaluation data consists of 1660 audio files, and 100 queries;
both data sets were selected from the LWAZI corpus to exhibit sim-
ilar properties with respect to the frequency and distribution of the
respective keyword sets. All these audio files were collected over a
telephone channel, and provided as 8kHz/ 16bit WAV files.

As the focus is on language-independent search, no pronuncia-
tion dictionaries are provided by default, although these are available
for contrastive experiments. Language labels are provided for the de-
velopment data, but not for the evaluation data. The locations of the
occurrences are provided, and participants received a scoring tool
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based on the Actual Term Weighted Value (ATWV) metric [1], in
which some of the internal parameters are modified to better repre-
sent a “useful” tradeoff between missed detections and false alarms
for the “Spoken Web Search” scenario.

Systems were classified into two conditions: restricted (essen-
tially the “zero resource” case where no external data is used) and
open. Participants could not use any LWAZI corpus resources that
had not been distributed for the evaluation, to avoid them inadver-
tently including evaluation data in development, they were free to
include any other resource (i.e. existing phone recognizers, etc.) in
their systems, as long as their use was documented.

4. SYSTEM DESCRIPTIONS

In the interest of brevity, we will describe in the following only an
informative selection of systems submitted to the evaluation, leaving
out some contrastive and diagnostic systems.

4.1. Open Systems

“Open” systems can use any resource available, as long as its use is
documented, and should therefore be able to outperform “restricted”
systems. Depending on the type of external resource chosen, the
costs may be negligeable, even though systems are no longer “zero
resource”. Most open systems employ some sort of multi-lingual
phonetic tokenizer to convert the audio data into a symbolic se-
quence, or frame-level posteriorgrams, which is then searched.

cuhk phnrecgmmasm p-fusionprf [10]

This system used five semi-supervised tokenizers [11] and two unsu-
pervised tokenizers. The semi-supervised tokenizers used phoneme
recognizers to convert the development audio data into posterior
features, which were further transformed and modeled by a mix-
ture of 256 Gaussians. Five semi-supervised tokenizers were built
from Czech, Hungarian, Russian, English and Mandarin phoneme
recognizers, which were all in the split temporal context network
structure [12, 13]. The two unsupervised tokenizers were “GMM”
and “ASM” (Acoustic Segment Modeling) [14], as described in Sec-
tion 4.2. All these tokenizers were used to generate posteriorgrams,
and Dynamic Time Warping (DTW) was applied for detection. To
exploit the complementary information of all the tokenizers, a DTW
matrix combination approach [11] was used. Pseudo relevance feed-
back (PRF) and score normalization were used as the back-end.

l2f 12 spch p-phonetic4 fusion mv [15]

The L2F SWS system consists of four sub-systems, which are each
based on the AUDIMUS [16] Automatic Speech Recognition (ASR)
system. They exploit four different language-dependent acoustic
models trained for European Portuguese, Brazilian Portuguese, Eu-
ropean Spanish, and American English.

A phone-loop grammar with phoneme minimum duration of
three frames is used to obtain a phonetic transcription or tokeniza-
tion for each query. In development experiments, no significant
benefit was observed when using alternative n-best hypothesis for
characterizing each query.

Spoken query search is based on Acoustic Keyword Spotting
(AKWS) using the hybrid AUDIMUS WFST recognizer. The sys-
tem combines four MLP outputs trained with 13 PLP features (plus
deltas), 13 PLP-RASTA (plus deltas), Modulation SpectroGram fea-
tures (28 static) and ETSI Advanced Front-end features (plus delta

and delta-deltas). A search sliding window of 5 seconds with 2.5
seconds of time shift is used to process each file. An equally-likely
1-gram language model formed by the target query and a competing
speech background model is used. The minimum duration for the
background speech word is set to 250 ms.

To normalize the mean and variance of the resulting scores, a
query dependent “Q-norm” normalization was applied. The four
sub-systems were then fused using majority voting.

BUT spch p-akws-devterms [17]

The BUT AKWS systems extract 3-state phone posterior features or
bottle-neck features encoding speech (queries and utterances) in low
dimensional vectors. The feature extractor is the same as that pre-
sented in [18], and contains a Neural Network (NN) classifier with
a hierarchical structure called bottle-neck universal context network.
Energies from 15 Mel-scale critical bands, ranging from 64 Hz to
3800 Hz, are extracted and passed through a logarithm.

For keyword spotting, a phone recognizer on the above men-
tioned 5-layer phone posteriors bottle-neck NN was developed, with-
out using any phoneme language model – only free phone loop. Us-
ing jack-knifing, this system achieved a phone accuracy of 66.0% on
the development data.

Following [19], an HMM was built for each query using a dic-
tionary, and the log likelihood ratio between a query model and a
background model (free phone loop) was computed. The develop-
ment forced alignment and graphemic transcription of queries to ob-
tain reference pronunciation of each query were used. This system
achieved an Maximum TWV of 0.737 and the Upper-bound Term
Weighted Value (UBTWV) of 0.859. The UBTWV finds the best
threshold for each query (maximizes the TWV per query) and then
averages the scores. It can be considered as non-pooled MTWV and
shows the room for calibration improvement, providing an (refer-
ence) “R-AKWS” upper bound.

The actual Acoustic Keyword Spotting is similar to the refer-
ence one (R-AKWS). Only no prior knowledge of queries (pronun-
ciation) was used. The pronunciation of the queries was automati-
cally generated using the above mentioned phone recognizer. After
generating pronunciations (one per query), surrounding silence was
stripped, achieving an MTWV of 0.453 and UBTWV 0.600 without
any score calibration on the development data. Using calibration,
MTWV improved to 0.493.

BUT spch g-DTW-devterms [17]

The DTW system was based on a simple template-matching algo-
rithm on bottle-neck features, using cosine distance as a similarity
function [20]. The primary ATWV metric is sensitive to the calibra-
tion of the detection scores. For each query, an ideal hard-decision
threshold was computed, which was then predicted during test us-
ing a linear regression model based on a number of features, such as
lengths, counts, scores, etc., which can be computed on the query.

arf spch p-asrDTWAlign w15 a08 b04 [21]

The ASR-based system has two components, as suggested in the
NIST 2006 evaluation campaign: the indexer and the searcher. The
indexed data are the transcriptions of the content data set using a
phone recognizer. The multilingual acoustic model is obtained by
adapting an acoustic model trained on Romanian language (previ-
ously developed in [22]) with the development data from the envis-
aged languages. The phone mapping is made using the International
Phonetic Alphabet and a confusion matrix.
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The searching component is based on DTW. A sliding window,
whose length is proportional to the query length, is used for localiz-
ing the term. The method is refined by penalizing short queries and
large DTW match spread in order to reduce the false alarms. This
choice is motivated by the fact that for shorter queries and larger
DTW match spreads the probability to confuse to similar phone
strings is higher. This method scales well, because once the data are
indexed the searching problem is reduced to string comparison.

gtts spch p-phone lattice [23]

As a first step, the open software BUT phone decoders for Czech,
Hungarian and Russian [12] are applied to decode both the spo-
ken queries and the audio documents. For each spoken query,
the N phone decodings with the highest likelihoods are extracted
from the phone lattice using SRILM’s lattice tool. Then, the Lat-
tice2Multigram (L2M) tool [24] by Dong Wang is applied. The
Master Label Files files are then re-ranked, filtered and converted to
STD files using a heuristic approach.

4.2. Restricted Systems

cuhk spch p-gmmasmprf [10]

This system used two unsupervised tokenizers trained from the de-
velopment audio data. The first was a GMM tokenizer containing
1024 Gaussian mixtures. The input of the GMM tokenizer was 39-
dimensional MFCC feature vectors, which had been processed with
vocal tract length normalization (VTLN). The second is an ASM to-
kenizer [14], containing 256 ASM units. Each unit had 3 states with
16 Gaussian mixtures for each state. The input features for the ASM
tokenizer were the same as those for the GMM tokenizer. Combi-
nation of these two tokenizers was performed by the DTW matrix
combination approach [11]. PRF and score normalization were used
as the back-end.

jhu all spch p-rails [25]

The RAILS approach involves four primary processing stages: (1)
each frame is mapped to a sortable bit signature using locality sensi-
tive hashing (LSH), using the variant that preserves cosine distance;
(2) sorted lists (the index) of the signatures in the search collection
are constructed; (3) using the index, approximate nearest neighbor
sets for each query frame are computed in logarithmic time, allow-
ing the construction of a sparse similarity matrix between query and
search collection; and (4) runs of similar frames are searched for
with efficient sparse image processing techniques applied to the sim-
ilarity matrix. During MediaEval system development, system per-
formance was investigated as a function of only two RAILS param-
eters: the size of the neighborhood search beam, B, and the cosine
similarity threshold for a frame-level comparison to make it into the
sparse matrix, δ. The default values listed in [26] were used for all
other RAILS parameters.

tid sws2012 IRDTW [27]

First, standard MFCC-39 (10 ms scroll in 25 ms window) features
are extracted from the acoustic data. Then, posterior probabilities
from these features are obtained by using a posteriors background
model [28] that resembles a GMM model but using EM and K-means
iterations during training. Then, after labeling the energy level of
each frame and eliminating those frames that have low energy a dy-
namic programming matching process is performed between queries

and reference data. To do this, we used a novel method called IR-
DTW [29] which uses information retrieval concepts to efficiently
match the queries into the database. In addition, we also submitted
a run using the DTW-based system we implemented for MediaEval
2011 [30]. After retrieving all matches for any of the two systems, a
post-processing step involves an overlap detection to eliminate those
matches that are highly overlapped with each other.

tum spch p-cdtw [31]

Cumulative Dynamic Time Warping (CDTW) method is a novel
variant of the DTW algorithm for comparing two sequences. Sev-
eral modifications are introduced compared to standard DTW: First,
the distance function measuring the local match between points of
both sequences is replaced with more general “step scores”. These
scores are calculated as the combinations of several “feature func-
tions” associated to each pair of points, and they can depend on the
local step taken (diagonal, horizontal or vertical).

The other main change compared to common DTW is that the
“hard” maximum (or minimum) operation of the DTW with the soft-
max operation. As a consequence, the obtained alignment score be-
tween the two sequences takes into account all the possible align-
ment paths instead of only the optimal one. Furthermore, the align-
ment score is differentiable with respect to the feature weights, al-
lowing for an learning of these values.

MFCC+delta+acceleration descriptors were computed using
HTK, and CMN/CVN was applied. The alignment features corre-
spond to several functionals of these descriptors. For the retrieval
task, a heuristic search for matching sequence candidates is first
performed and the CDTW score is used as a decision score.

tuke spch p-dtwsvm [32]

The substantial step in comparing audio content of two segments is
to extract parameters (coefficients) that capture temporal and spec-
tral characteristics of the audio signal. We have tried several com-
binations of features such as MFCCs, ZCR and MPEG-7 low level
descriptors (ASS, ASC, ASF, ASE) and chose the one with the aver-
age minimum-cost alignment (avgMCA), by using DTW algorithm,
between selected queries and corresponding terms within utterances.
The optimal results were achieved by using first 12 MFCCs features
and zero energy coefficient (the avgMCA was about 250.1).

The main functionality of this proposed search algorithm lies
in comparing two audio segments, with the same length, by using
DTW algorithm and misclassification rate of Support Vector Ma-
chine (SVM) classifier. The first segment represents the searching
query and the second one refers to the audio segment of each utter-
ance with the same length as the query segment. Lin et al. [33] have
used a similar procedure for detecting speaker changes, based on a
new SVM training misclassification rate.

5. RESULTS AND ANALYSIS

Figure 1 shows the results of the primary system that each participant
submitted on development data, which participants used to tune their
approaches. Figure 2 shows the corresponding results on the unseen
evaluation data.

Table 1 lists the results for these systems on both development
and evaluation data, as scored by the organizers. This table lists the
primary Actual Term Weighted Value metric achieved by the sys-
tems, while Figure 1 and Figure 2 show the Maximum TWV, so most
systems were well tuned.
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Development data, development terms, MTWV scores per site

Random Performance
ARF 0.491
BUT 0.493

BUT-g 0.468
CUHK 0.787

CUHK-g 0.680
JHU-HLTCOE 0.382

L2F 0.531
TUKE 0.000
TUM 0.354
TID 0.390

GTTS 0.105

Fig. 1. DET (Detection Error Tradeoff) plots and MTWV (Maxi-
mum TWV) results for development terms on development data.
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Evaluation data, evaluation terms, MTWV scores per site

Random Performance
ARF 0.310
BUT 0.530

BUT-g 0.488
CUHK 0.762

CUHK-g 0.643
JHU-HLTCOE 0.384

L2F 0.523
TUKE 0.000
TUM 0.296
TID 0.342

GTTS 0.081

Fig. 2. DET plots and MTWV results for evaluation terms on evalu-
ation data.

Table 1. Results (Actual TWV) for selected SWS 2012 systems.

System Type Dev Eval
cuhk phnrecgmmasm p-fusionprf (CUHK) open 0.782 0.743
cuhk spch p-gmmasmprf (CUHK-g) restricted 0.678 0.635
l2f 12 spch p-phonetic4 fusion mv open 0.531 0.520
BUT spch p-akws-devterms (BUT) open 0.488 0.492
BUT spch g-DTW-devterms (BUT-g) open 0.443 0.448
jhu all spch p-rails (JHU-HLTCOE) restricted 0.381 0.369
tid sws2012 IRDTW restricted 0.387 0.330
tum spch p-cdtw restricted 0.263 0.290
arf spch p-asrDTWAlign w15 a08 b04 open 0.411 0.245
gtts spch p-phone lattice open 0.098 0.081
tuke spch p-dtwsvm restricted 0 0

It is interesting to note that under the given conditions, the zero-
knowledge (“restricted”) approaches could perform quite similarly
to “open” (typically model-based) approaches, which typically rely
on the availability of matching data from other languages. The dif-
ference is about 0.1 for the two CUHK systems, but 0.05 for the two
BUT systems; the BUT DTW-based system used a tokenizer based
on phone labels, so it was also classified as an “open” system. One
of the reasons for the good performance of the CUHK systems may
be the careful application of VTLN, which none of the other par-
ticipants attempted, and the fusion of similarity matrices obtained
using several different front-ends. The BUT experiments show that
not having a lexicon available for query terms greatly impacts the
performance of the AKWS system.

While not discussed in detail at the workshop, participants re-
ported that this year’s systems beat the 2011 systems on the 2011
data set, which used a different cost function for deletions versus in-
sertions. To keep the load light for participants, no further measure-
ments were required, so we cannot report on the complexity (both for
building and at runtime) of the approaches, but participants reported
that most approaches were quite lightweight. Also, participants used
a wide range of resources and techniques, including the Brno phone
recognizers [13] and neural network front-ends.

As some of the submitted systems consisted themselves already
of several components, the organizers fused various system outputs
in the “open” and “restricted” conditions using the CombMNZ algo-
rithm as a post-evaluation experiment. The fused performance would
beat the performance of the best system involved in the fusion, but
not by much (ca. 0.03) for cases involving the CUHK systems.

6. CONCLUSIONS AND OUTLOOK

The results of the second SWS task at MediaEval shows progress
on low-resource spoken term detection, and discussion at the work-
shop has already sparked a number of new investigations. The task
investigates the fundamentals of how audio content can be made
searchable, without having to develop a dedicated speech recognizer
and dialog system, which is still a significant effort, particularly for
resource-scarce settings.

With respect to the amount of in-domain data available, this task
is even harder than the research goals proposed by, for example,
IARPA’s Babel [34] program, yet results have been achieved that
appear useful in the context of the “Spoken Web” task, which is tar-
geted primarily at communities that currently do not have access to
Internet. Many target users have low literacy skills, and many speak
in languages for which fully developed speech recognition systems
will not exist even for years to come.

This work therefore presents an approach that can enable voice
interaction in resource scarce settings, with all associated benefits,
and also presents a lightweight test-bed in which ideas in many fields
relevant to speech processing can be evaluated easily, which we in-
tend to develop further in the future, using LWAZI data (which is
already available to the public), or other similar corpora.

7. ACKNOWLEDGMENTS

The authors would like to acknowledge the MediaEval Multimedia
Benchmark [35], and IBM Research India for providing the inspira-
tion which sparked the first “Spoken Web Search” Task at MediaEval
2011. The organizers would also like to thank Martha Larson from
TU Delft for organizing this event, and the participants for their hard
work on this challenging evaluation.

8124



8. REFERENCES

[1] J. Fiscus, J. Ajot, J. Garofolo, and G. Doddington, “Results
of the 2006 spoken term detection evaluation,” in Proc. SSCS,
Amsterdam; Netherlands, 2007.

[2] A. Kumar, N. Rajput, D. Chakraborty, S. K. Agarwal, and
A. A. Nanavati, “WWTW: The world wide telecom web,” in
NSDR 2007 (SIGCOMM workshop), Kyoto, Japan, Aug. 2007.

[3] M. Diao, S. Mukherjea, N. Rajput, and K. Srivastava, “Faceted
search and browsing of audio content on spoken web,” in Proc.
CIKM, 2010.

[4] N. Rajput and F. Metze, “Spoken web search,” In Proc. Medi-
aEval 2011 [36].

[5] D. Can, E. Cooper, A. Ghoshal, M. Jansche, S. Khudanpur,
B. Ramabhadran, M. Riley, M. Saraçlar, A. Sethy, M. Ulinski,
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spoken web search - MediaEval 2012,” In Proc. MediaEval
2012 [35].
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