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ABSTRACT

We summarize the accomplishments of a multi-disciplinary work-
shop exploring the computational and scientific issues surrounding
zero resource (unsupervised) speech technologies and related mod-
els of early language acquisition. Centered around the tasks of pho-
netic and lexical discovery, we consider unified evaluation metrics,
present two new approaches for improving speaker independence in
the absence of supervision, and evaluate the application of Bayesian
word segmentation algorithms to automatic subword unit tokeniza-
tions. Finally, we present two strategies for integrating zero resource
techniques into supervised settings, demonstrating the potential of
unsupervised methods to improve mainstream technologies.

Index Terms— zero resource, speech recognition, language ac-
quisition, Bayesian word segmentation, speaker independence

1. INTRODUCTION

Zero resource speech technologies operate without the expert-
provided linguistic knowledge that standard recognition systems rely
on—transcribed speech, language models, and pronunciation dictio-
naries. A robust zero-resource system must instead discover this
linguistic knowledge from speech audio automatically. The problem
is similar to that facing human infants, who must specialize their
speech perception and production systems to their native language
(though perhaps with help from other sensory modalities). This has
led to the emergence of parallel scientific and engineering commu-
nities working towards strikingly similar research objectives—to un-
derstand how linguistic structure can be discovered from speech.
The workshop brought together researchers in speech recognition,
computational linguistics, and cognitive science in order to encour-
age dialog and extend and integrate existing techniques for linguis-
tic discovery. Moreover, we sought to identify common evaluation
frameworks to benchmark efforts across disciplines and provide use-
ful predictors for technological success that also have an obvious
path for application in human studies.

The two core technological and scientific building blocks of in-
terest in the workshop were phonetic and lexical discovery. Phonetic
discovery, also known as fully unsupervised acoustic model training
in the speech community, is the process of automatically identifying
the categorical subword inventory and relating it to the underlying
acoustics. Existing methods rely on an acoustic feature representa-
tion, a notion of distance in that feature space, and an unsupervised
learning algorithm. Speaker independence remains a major stum-
bling block [1] and improving it can be tackled in any of these three
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components. Given limited success of core recognition architec-
tures in the zero resource setting, several alternative acoustic front-
ends and unsupervised acoustic models have been proposed in recent
years [2,3,4,5,1,6,7,8,9, 10], though there has been limited effort
to evaluate these methods in a systematic way. Lexical discovery
is the process of automatically identifying meaningful word-sized
units from speech. Speech recognition researchers have developed
discovery systems that search for repeated acoustic patterns, treating
the remainder of the corpus as background [2, 3]. Most cognitive
models of lexical discovery, on the other hand, perform a complete
word segmentation, attempting to identify the boundaries between
every word [11, 12, 13, 14, 15]. While complete segmentation is
more desirable, existing segmentation algorithms require as input a
subword unit tokenization that in the zero resource setting requires
a phonetic discovery module. However, it remains an open question
whether a categorical subword structure should be prerequisite.

To date these phonetic and lexical discovery tasks have been
mostly considered in isolation. However, it has been recently
demonstrated that even imperfect subword units can improve word
discovery and detection [1], while an incomplete lexicon can aid sub-
word unit discovery [16, 1, 17]. Moreover, cognitive science studies
suggest that infants learn by simultaneously refining their subword
units and their lexicon [18], indicating an integrated solution is likely
necessary. Ultimately we would like to use insights from both of the
speech and cognitive traditions to develop methods that can work
from acoustics but also incorporate some of the top-down informa-
tion that has been shown to help in cognitive models [19, 20, 21].
Still, the limited cross-disciplinary collaboration has failed to pro-
duce an evaluation of even the most basic integration strategies. With
these issues in mind, the workshop efforts were divided into three
interrelated subtopics: (i) devising unified evaluation metrics, (ii)
improving and evaluating speaker independence of features and un-
supervised acoustic models, and (iii) evaluating Bayesian word seg-
mentation algorithms on noisy tokenizations automatically extracted
from real speech data. In parallel, a fourth subteam explored strate-
gies for integrating zero resource techniques into mainstream speech
technologies. Results and background are summarized in the follow-
ing sections. The interested reader can find workshop presentation
videos on the web [22].

2. CROSS-DISCIPLINARY EVALUATION CRITERIA
We restricted our pursuit of a common evaluation framework to the

task of phonetic discovery. We took as a starting point a recently
proposed zero resource evaluation metric [23] that attempts to de-
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termine how well various speech representations enable discrimina-
tion between word example pairs having the same or different type.
This evaluation, referred to below as the same-different task, may
be applied to both vector time series representations of speech (e.g.
acoustic features or acoustic model posteriorgrams) and tokeniza-
tions (1-best subword unit decodes). This provides a unified means
to evaluate representational quality regardless of data type, which by
itself already goes a long way in unifying the evaluation of multiple
computational strategies.

For a given multi-speaker corpus, the evaluation requires a pre-
segmented collection of word examples (11k in our experiments be-
low) provided by a forced alignment of the transcript. For all pairs of
word examples (some 60 million), we compute a word-level dissimi-
larity, which we define as normalized dynamic time warping (DTW)
distance for vector representations and as string edit distance for sub-
word unit tokenizations. This dissimilarity is used to discriminate
between same- and different-type pairs, where we characterize per-
formance with average precision (AP). High AP indicates that the
given representation is consistent across speakers. For supervised
acoustic models, [23] demonstrated perfect correlation between AP
and phone recognition error rate; given this AP can also be computed
for features and unsupervised models, it is an ideal proxy.

The remaining question is whether this is also a natural evalua-
tion metric for testing linguistic or scientific plausibility of a given
phonetic discovery procedure. One appealing property is that such
word level discrimination tasks can be conducted with human sub-
jects, including infants. In addition, the scores on the same-different
task can be analyzed for individual word type pairs, enabling more
refined diagnostics of the front-ends. Further analysis was performed
on the TIMIT same-different evaluation word set defined in [10].
We found it contains over 100k near-minimal pairs (edit distance
less than 50% of string length), enabling secondary evaluation of
representational performance on a wide array of phonetic contrasts.
In particular, we successfully reconstructed phoneme- and feature-
based confusion matrices using linear regression models of type-
restricted same-different scores.

3. SPEAKER INDEPENDENCE OF ACOUSTIC FEATURES
AND UNSUPERVISED MODELS

Recent zero resource efforts [2, 3, 4, 5] clearly demonstrate that
front-ends that work best with supervised back-ends are not opti-
mal for unsupervised learning. Likewise, stripped of any guidance
from word transcripts and a pronunciation dictionary, the normal
expectation-maximization training procedures for Gaussian mixture-
based acoustic models are no longer capable of identifying speaker
independent phonetic categories in a purely bottom-up fashion [24].
With these considerations in mind, an explicit goal of the workshop
was to evaluate a variety of acoustic front-ends and unsupervised
acoustic modeling strategies, both in isolation and in combination,
for suitability in downstream zero resource technologies. In do-
ing so, we have taken the initial steps in benchmarking competing
approaches being developed across several institutions. Moreover,
workshop participants identified two new approaches to improving
representational speaker independence, which are summarized be-
low and followed by the evaluation results.

3.1. Spectral Smoothing and Top-Down Lexical Constraints

A main source of speaker variation is the formant pattern changes
that result from vocal cavity variation. Hermansky and Broad [25]

demonstrated that the front cavity of the vocal tract, which is rela-
tively invariant under changing vocal tract lengths, determines the
phonetic value of the vowel and can be decoded by identifying the
F2' (effective second formant). It was shown that the F2’ value is
closely tracked by the peaks of lower order perceptual linear pre-
diction (PLP) spectral estimates. However even after PLP smooth-
ing of the spectra, the cepstral transformation and subsequent mean
variance normalization can still increase the effect of higher order
cepstra on distance measures. Thus, team members considered two
signal processing derived methods for improving front-end speaker
independence: (i) reducing PLP model order O (default is 12) and
(ii) cepstral truncation to D components (default is 13).

We also investigated the use of top-down lexical constraints to
complement bottom-up unsupervised acoustic model training algo-
rithms, e.g. [4, 7, 8, 9, 5]. In traditional supervised settings, lexical
constraints come in the form of orthographic transcripts and pro-
nunciation dictionaries. In the zero resource setting, we can fall
back onto spoken term discovery algorithms that perform exhaustive
searches through large corpora for word repetitions using nothing
but the raw acoustic features as input [2]. While these algorithms
do not provide the identity of the discovered items, they provide
evidence that repetitions should have similar underlying subword
unit sequences. This is a much weaker form of supervision, but it
comes at little cost. The approach considered in the workshop, de-
scribed in detail in [24], consists of four steps: (1) training a 1024-
component Gaussian mixture model (GMM) on a large sample of in-
domain audio, which serves as a sort of universal background model
(UBM) for all speech sounds; (2) running a spoken term discovery
system across the speech collection to produce a collection of word
or phrase segment pairs and compute UBM posteriorgrams for each
segment; (3) performing a DTW alignment of the acoustic frames of
each word segment pair and use the frame-level correspondences to
construct a similarity matrix over UBM components; and (4) parti-
tioning the UBM Gaussian components with spectral clustering [26]
and using each subset to define a subword unit GMM.

3.2. Same-Different Evaluation Results

We computed same-different task performance for several acoustic
front-ends, including mel frequency cepstral coefficients (MFCC),
PLP, frequency domain linear prediction (FDLP) [27], and nonlin-
ear intrinsic spectral analysis (ISA) [10]. All acoustic features in-
cluded velocities/accelerations and were globally mean and vari-
ance normalized. On the unsupervised acoustic model side, we con-
sidered output posteriorgrams from the standard bottom-up GMM-
based UBM [4] both with and without the weak top-down constraints
described above, as well as posteriors generated by the nonparamet-
ric Bayesian (NP Bayes) training procedure described in [9]. Finally,
we provide task performance for English phonetic posteriorgrams
from neural network (NN) acoustic models, serving as a supervised
performance ceiling. We considered the same-different evaluation
of Sec. 2 for both Switchboard and TIMIT (see [23] and [10] for de-
tails). Workshop time limitations precluded evaluation of all front-
end and model combinations, while scalability constraints limited
ISA and NP Bayes experiments to TIMIT.

Table 1 lists the Switchboard same-different evaluation perfor-
mance for several features and model posteriorgrams, along with the
DTW frame-level metric. First, we found that halving both the PLP
model order and number of cepstral coefficients improved same-
different task performance by 20% relative. For FDLP, which in-
cludes gain normalization but no linear predictive spectral smooth-
ing, simply truncating the cepstrum to five dimensions produced a
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Table 1. Switchboard same-different evaluation results.

Representation Metric AP
FDLP cosine 0.215
PLP cosine 0.177
MEFCC cosine 0.191
Truncated FDLP (D = 5) cosine 0.257
Truncated PLP (O = 7, D = 6) cosine 0.212
PLP + GMM-UBM + Top-down, 100 units | symm KL | 0.286
PLP + GMM-UBM + Top-down, 50 units symm KL | 0.238
PLP + GMM-UBM, 100 units symm KL | 0.196
PLP + GMM-UBM, 50 units symm KL | 0.151
English NN Posteriorgrams, 100 hr symm KL | 0.516
English NN Posteriorgrams, 10 hr symm KL | 0.439

Table 2. TIMIT same-different evaluation results.

Representation Metric AP
ISA cosine 0.496
PLP cosine 0.348
MFCC cosine 0.338
MEFCC + NP Bayes, 507 units symm KL | 0.445
MEFCC + GMM-UBM, 507 units | symm KL | 0.271
MFCC + GMM-UBM, 50 units symm KL | 0.236
ISA + NP Bayes, 474 units symm KL | 0.464
ISA + GMM-UBM, 507 units symm KL | 0.447
ISA + GMM-UBM, 50 units symm KL | 0.332
English NN Posteriorgrams symm KL | 0.846

similar relative gain. Next, we found that GMM-based unsupervised
models are unable to substantially outperform the raw features them-
selves, indicating the need for some form of constraint to produce
speaker independence. We observe that the weak top-down con-
straint mechanism described in 3.1 provides up to 57% relative im-
provement over bottom-up training alone, providing more evidence
for the promise of multi-level integration.

Table 2 lists the TIMIT evaluation results. Previous work [10]
demonstrated substantial improvements when using ISA instead of
standard PLP and MFCC features. However, ISA has no explicit
categorical structure, so we evaluated its combination with unsuper-
vised acoustic models. In combination with GMM-based models, we
found ISA to provide a large relative improvement over the MFCC +
GMM-UBM counterpart. Moreover, with MFCC input, we found a
drastic improvement when using the nonparametric Bayesian HMM-
GMM techniques over simple expectation maximization estimation
of GMMs. The ISA/NP Bayes combination produced the best acous-
tic model performance to date for this task. Still, the strong perfor-
mance of ISA alone raises the issue of whether a categorical subword
structure is even necessary to discover speaker independent lexical
structure. Either way, while we have recovered 60% of the super-
vised performance ceiling, there is much more to be understood.

4. BAYESIAN WORD SEGMENTATION OF AUTOMATIC
SUBWORD UNIT TOKENIZATIONS

Nearly all word segmentation models [11, 12, 13, 14, 15] have been
evaluated on manual phonemic tokenizations of the speech rather
than deriving them automatically from the acoustic stream. Acous-
tic model provided tokenizations introduce substantial noise into
the system, which only increases as we move from supervised sub-
word models to the unsupervised ones described above. As a first
exploratory step on the road to a fully integrated lexical and pho-
netic discovery model, we evaluated the performance of three word
segmentation models applied to subword tokenizations produced by
both supervised and unsupervised acoustic models.

4.1. Models

We experimented with three recent nonparametric Bayesian models
of word segmentation. All assume a generative process in which a
sequence of words is generated, and then the boundaries between
these words are removed to create the observed unsegmented se-
quence of phones. For inference, all models use Markov Chain
Monte Carlo algorithms, which produce samples from the posterior
distribution of segmentations given the observed corpus. The sim-
plest of the three models is the Dirichlet process (DP) model [19],
which assumes that the latent sequence of words was generated us-
ing a unigram model. The second model is the hierarchical Dirich-
let process (HDP) model [19], which extends the DP model by as-
suming that the latent word sequence is generated from a bigram
rather than a unigram model. Finally, we used the ’Colloc’ model
from [21], which is based on the Adaptor Grammar framework [28]
and assumes that the latent word sequence is generated as a se-
quence of “collocations,”, each consisting of one or more words.
All three models compute the probability of the first occurrence
of a word using a unigram phone model, and further occurrences
of words/bigrams/collocations using (roughly) relative frequencies.
Previous work using phonemic input [19, 21] showed that the Bi-
gram and Colloc models produce much more accurate segmentations
than the Unigram model, a result that was used to argue that the con-
textual information provided by word-level dependencies is impor-
tant for successful segmentation. (In the same papers, the Colloc
outperformed Bigram, largely due to more sophisticated inference
methods.) One goal of the current study was to examine whether the
word-level dependency claim also holds for noisier input.

4.2. Evaluation and Discussion

Our evaluation was performed on various tokenizations of the
Switchboard corpus. As this differs from the Bernstein-Ratner/Brent
corpus of child-directed speech [29, 12] that the models were previ-
ously tested on, we included as an upper baseline a phonemic tran-
scription of Switchboard derived from the orthographic word tran-
scripts and a pronunciation dictionary. We also ran the models on
(i) phonetic transcriptions from the ICSI Switchboard Transcription
Project [30], which have about 30-35% phone error rate in compar-
ison to the phonemic transcription; (ii) the 1-best output of a super-
vised neural network (NN) phone recognizer (the 100-hr model used
in Table 1) with a 50% phone error rate; (iii) a 1-best decode of unsu-
pervised GMM-UBM acoustic model, one with 25 units and another
with 50 units; and (iv) 1-best output of the top-down constrained
model with 100 units (described in Sec. 3.1). The 1-best outputs
were generated using a Viterbi decode using an ergodic HMM with
one state per output unit, uniform transition probabilities, and emis-
sion likelihoods generated by the given subword models. For scor-
ing, each subword unit token was assigned to reference word token
using forced aligned word transcripts (boundary units went to word
with majority overlap). Performance was measured using token F-
score, which requires both boundaries of each word to be correct.
Table 3 lists the word segmentation token F-score for each to-
kenization and model combination. Results from the unigram and
bigram models are from a single sample after 10k iterations using
the hyperparameter values from [19]. Results from the collocation
model (run for 1000 iterations) use hyperparameter inference and
maximum marginal decoding, which combines information from the
last 500 samples of a single MCMC run as in [21]. Although the
phonemic Switchboard corpus is clearly more difficult than the cor-
pus of child-directed speech, the models perform reasonably well on
it, and (as in previous work) we find that the models with word-level
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Table 3. Word segmentation token F-scores (%) for Bernstein-
Ratner/Brent phonemes and various Switchboard tokenizations.

Tokenization Unigram | Bigram | Colloc
Bernstein-Ratner/Brent Phonemes 54 71 86
Switchboard Phonemes 58 66 66
Switchboard Allophones 29 22 29
English NN, 100 hr 28 18 27
GMM-UBM, 25 units 44 2.8 3.7
GMM-UBM, 50 units 4.1 2.2 3.5
GMM-UBM + Top-down, 100 units 3.1 1.4 2.5

Table 4. Word recognition accuracies (%) with DNN features and
semi-supervised training.

System Accuracy
Conventional acoustic features (PLP) using

1 hr. of English training data (baseline) 28.8
DNN based features pre-trained using

31 hrs. German/Spanish and 1 hr English 41.0
Acoustic model self-training with DNN features 44.8

dependencies (Bigram and Colloc) perform better than the Unigram
model. However, as the input becomes noisier, performance of all
models degrades drastically, and the Unigram model performs bet-
ter. This is likely due to a blowup in the number of distinct phone se-
quences for each word—in the phonemic representation, each word
is always represented by the same phone sequence, yielding a to-
tal lexicon of 4107 unique units. But in the other tokenizations, the
number of unique units ranges from 13,668 to 35,534 (in a perfect
negative correlation with token F-score). Since the models use re-
peated phone sequences to identify words, they are left without much
signal even for learning individual words, much less dependencies.
These results underscore the need for integrated models using
both top-down and bottom-up information to simultaneously dis-
cover phones and words. The word segmentation part needs to
allow for variability in the phonetic realization of words, but can
also provide top-down pressure for sounds in similar contexts to
be labeled as the same phone. Steps in this direction have been
taken [16, 31, 32], but we are aware of no fully integrated system
using speech data as input. It might also be possible to improve re-
sults on automatic tokenizations by identifying each token as, say,
consonantal or vocalic. This permits more sophisticated sub-word
models in the segmentation systems, such as a syllable model rather
than a unigram phone model. For Switchboard phoneme, allophone
and NN input (where the consonant/vowel distinction is available),
we found that learning syllables as well as words and collocations
(’Colloc-Syllable’ model of [21]) improved performance by 8-14%.

5. AIDING DOWNSTREAM SUPERVISED APPLICATIONS

In addition to exploring algorithms for unsupervised phonetic and
lexical discovery, we investigated the role zero-resource methods can
play in downstream supervised tasks. Below we describe two such
efforts in large vocabulary recognition and spoken term detection.

5.1. Data-driven Front-ends and Selective Self Supervision

Acoustic models for state-of-the-art automatic speech recognition
(ASR) systems are typically trained using hundreds or thousands of
hours of transcribed speech audio. In low resource scenarios, we
seek multi-lingual and semi-supervised methods to leverage more
easily acquired high-resource or untranscribed speech to improve
our ASR performance with minimal cost. Two avenues were ex-

plored in the workshop: (i) a multi-lingual corpus was used to train
a data-driven, language-invariant front-end for low-resource recog-
nition; and (ii) untranscribed speech audio was automatically tran-
scribed and used to augment to the labeled data for training, a pro-
cedure known as self-training [33, 34]. For (i), discriminative deep
neural network (DNN) pre-training [35] was performed on a multi-
lingual corpus consisting of 31 hours of German/Spanish and only
a single hour of English. The output of an internal DNN layer was
then used to generate so-called bottleneck features with which we
train an English large vocabulary speech recognizer using only the
same hour of transcribed English speech. For (ii), the recognizer
from (i) was used to automatically transcribe an additional 14 hours
of English speech. Utterances with high-confidence recognition out-
puts were selected to be fed back for recognizer re-training. Table 4
shows that both techniques can improve recognition accuracy up to
16% absolute (55% relative). For details, see [36].

5.2. Improving Keyword Search using Lexical Discovery

Spoken term detection (STD) systems provide an efficient means
to search large speech corpora for user-specified query words and
phrases. Lexical discovery systems can automatically identify words
of possible interest [3], so we investigated their utility in improving
the search results of a high resource STD system. The STD baseline
was a hybrid two-pass index-based system [37], which produces a
ranked list of speech intervals that likely contain the occurrences of
the query term along with confidence scores. The word discovery
system, described in [38], produces a list of speech interval pairs
(also with a confidence score), that likely contain the same word
or phrase, but whose identity is unknown. We used this unlabeled
repetition information to help verify the STD system hypotheses in
a graph-based approach. Results from the two systems define the
graph nodes, the discovery confidence scores define edge weights,
and the STD system hypotheses are rescored using random walks.
Performance was evaluated on a course lecture search task using a
set of 34 out-of-vocabulary query terms with 243 occurrences over-
all [37]. The figure-of-merit [37] of the original and fused systems
were 38.7% and 43.7%, respectively—a 13% relative performance
improvement from augmenting the core STD system with zero re-
source techniques. For details, see [39].

6. CONCLUSIONS

The research and development of zero resource speech technolo-
gies is in its infancy. By bringing together leading researchers in
related areas, we were able to begin benchmarking state-of-the-art
techniques and take the first steps towards multi-level component in-
tegration. The main conclusion is that there remains long way to
go in bridging the gap between unsupervised and supervised per-
formance, and simple combination of existing discovery techniques
across levels of linguistic representation is not sufficient. The exper-
iments of Sec. 4 clearly indicate there is equal room for improve-
ment on both the acoustic processing and computational linguistics
sides of the effort, though the independent pursuit of both is subop-
timal. The speaker independence gains from including word-level
top-down constraints on phonetic discovery (Sec. 3) add to the ex-
isting evidence that a unified multi-level discovery model will be re-
quired. Given the demonstrated success of non-parametric Bayesian
models for phonetic and lexical discovery, the obvious next step is
integration under this methodological umbrella. In the meantime,
there is a clear avenue for impact, as even imperfect unsupervised
techniques can be complementary to supervised systems.
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