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ABSTRACT 
 
This paper proposes a scheme of speech-driven lips and tongue 
animation synthesis in a speaker-independent manner. Directional 
relative displacement (DRD) features are proposed based on the 
Electromagnetic Articulograph (EMA) data to describe human’s 
lips and tongue movements, which are more stable across different 
speakers than the raw EMA data. Multi speakers’ acoustic-
articulatory data of vowels are used to learn the acoustic-to-
articulatory inversion mapping. We build 2D geometric models of 
lips and tongue for visualization. With the trained mapping and the 
geometric models, visualization of lips and tongue movements 
from acoustic signal of vowels uttered by arbitrary speaker is real-
ized. The experimental results demonstrate that the animations we 
synthesized are effective aids in helping people identifying vowels. 
 

Index Terms— speech visualization, articulatory models, 
electromagnetic articulograph, acoustic-to-articulatory inversion  
 
 

1. INTRODUCTION 
 
The visual information of lips and tongue’s movements can en-
hance speech perception, especially under noisy environment or 
when one or more talkers have hearing disorder [1]. They are also 
effective hearing aids in second language learning and teaching 
hearing impaired people how to speak [2]. Therefore, visualization 
of lips and tongue movements with acoustic signal would have 
many potential applications, which is a technology that integrates 
visualization method and acoustic-to-articulatory inversion map-
ping algorithm.  

Speech visualization technology with virtual articulatory 
models has been developed by many researchers. Two-dimensional 
(2D) or three dimensional (3D) articulatory mesh models of lips, 
tongue and jaw are generally used in prior woks [3-5]. To control 
the motion of these articulatory models, various types of data rec-
orded from the real speaker are used, such as 3D motion capture 
data and Electromagnetic Articulograph (EMA) data. Most of prior 
works extract control parameters from the 3D coordinates of sen-
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sors attached on speaker’s organs to control their virtual models [4-
6]. The reconstruction of articulatory movements from acoustic 
signal is considered as a difficulty and ill-posed problem for the 
highly nonlinearity and the "one-to-many" nature. Many corpus-
based methods have been proposed such as codebook model [7], 
mixture density network [8], and Gaussian Mixture Model (GMM) 
based mapping [9]. All these approaches use single speaker’s 
acoustic-articulatory data to learn the mapping between acoustic 
space and articulatory space. Ghosh and Narayanan [10] proposed 
a subject-independent acoustic-to-articulatory inversion method 
use only one speaker’s data to learn the mapping. However, the 
acoustic-articulatory data from single speaker is limited, and the 
widely adoption of EMA device makes it possible to obtain multi 
speakers’ EMA data. 

To control virtual articulatory models using multi speakers’ 
data is the aim of our work. For this purpose, the coordinates of 
EMA coils are not suitable features to represent articulatory 
movements, because the shape and size of human articulator varies 
across speakers and virtual models, and EMA coils may shift or be 
reattached during recording procedure. We propose directional 
relative displacement (DRD) features as representation of articula-
tory space, which are more stable across different speakers than the 
raw EMA data. GMM-based mapping method is adopted to con-
struct acoustic-to-articulatory inversion mapping, and multi speak-
ers’ acoustic-articulatory data are used to learn and test the map-
ping. We built 2D geometric models of lips and tongue with B-
spline curves for visualization, which performs well in showing 
animation for its clarity. The estimated DRD features are then used 
to drive the models in real-time. The experiment results show that 
the 2D animations we synthesized are helpful for vowels identifi-
cation. 

The rest of this paper is organized as follows. Section 2 gives 
the details of our acoustic-articulatory database. Section 3 de-
scribes the DRD features. In Section 4, geometric models of lips 
and tongue are described. In Section 5, The GMM-based mapping 
method is reviewed. The experiments and results are shown in 
Section 6. We summarize this paper in Section 7. 
 

2. DATA ACQUISITION 
 
In this study, we built an acoustic-articulatory database which in-
cludes six speakers’ data. EMA device was used to capture the 
movements of lips and tongue, and acoustic signal was recorded 
synchronously by a uni-directional microphone. The EMA sam-
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pling frequency was set to 100Hz, and the audio recording sam-
pling frequency was 22.05 kHz. Three male and three female adult 
Chinese speakers participated in the recording procedure. None of 
the speakers was professional broadcaster, and their utterance may 
have different accents even they were requested to pronounce as 
accurate as they can. Speakers were asked to keep their mouth 
closed and keep their tongue close to palate when they were not 
uttering. 

The EMA coil positions are shown in Fig. 1. We use eleven 
coils: coils RR (reference right), RM (reference middle) and RL 
(reference left) are reference coils, they were used to record the 
rigid movement of the head; coils LR (lip right), LU (lip up), LL 
(lip left) and LD (lip down) were used to record the movement of 
lips; coils TT (tongue tip), TB (tongue body) and TD (tongue dor-
sum) were used to record the movement of tongue; coil J (jaw) was 
used to record the rotational movement of jaw. Coils TT, TB and 
TD were glued on symmetric line of tongue's upper surface, and 
other coils were glued on face. 

The corpus consisted of 6 simple vowels of Mandarin: a, o, e, 
i ,u, ü; and 29 compound vowels of Mandarin: ai, ei, ao, ou, ia, ie, 
iao, iou, ua, uo, uai, uei, üe, an, en, ang, eng, ong, ian, in, iang, ing, 
iong, uan, uen, uang, ueng, üan, ün (denoted by Chinese pinyin). 
Each term was uttered twice by each speaker and each speech ses-
sion lasts for 3 seconds with about 1 second silence period at the 
beginning and the end of the speech session. 
 

3. FEATURE EXTRACTION 
 
3.1. Acoustic feature extraction 
 
The original speech signal were divided into acoustic frames, the 
frame length and shift were 20ms and 10ms, respectively. Thus, the 
acoustic frame rate was 100Hz, which is the same as the sampling 
rate of EMA data. The RMS amplitude and 16-order Line Spectral 
Pairs (LSPs) were adopted as acoustic features. The features were 
extracted by Speech Signal Processing Toolkit (SPTK)[11]. 
 
3.2 Articulatory feature extraction 
 
We propose directional relative displacement (DRD) features as 
representation of the lips and tongue’s movements because they are 
more stable across different speakers than the raw EMA data. The 
DRD features are explained as follows. For each frame, we calcu-
late each EMA coil’s displacement, which is the Euclidean distance 
of the coil’s position to its initial position. A relative displacement 
is the ratio of an EMA coil displacement to a normalization unit, 
and a DRD feature is the projection of a relative displacement on 

one of the main directions. Initial positions of EMA coils are ob-
tained from silence period of a speech session where speaker’s 
mouth is closed and tongue is kept close to palate. See Fig. 2 for 
the initial position of coils and definition of main directions and 
normalization units. Table 1 shows the details of DRD features. 
The subscript 0 denotes initial position of each coil， 0tX X  
denotes the displacement vector of coil X  at t-th frame. 0Lw  is 
the distance between right lip coil and left lip coil, and 0La  is the 
distance between upper lip coil and lower lip coil at initial position. 

0Td  is defined by 0 01 02( ) / 2Td Td Td  , where 01Td  is the 
Euclidean distance between 0TT and 0TB , 02Td  is the Euclidean 
distance between 0TB and 0TD . 0Jl  is the length of the speaker’s 
under jaw. 0 / 2Lw , 0Td and 0Jl  are defined as normalization 
units for lips, tongue and jaw, respectively. Vectors lx


, ly


 and lz


 
( l l lz x y 

 
) are orthonormal vectors for lip space, the direction 

of lx


 is form 0LR  to 0LL , and the direction of ly


 is from 0LD  
to the 0LU ; vectors ty


 and tz


 are orthonormal vectors for tongue 

space, the direction of tz


 is from 0TD  to 0TT , and ty


 is perpen-
dicular to tz


 in mid-sagittal plane. The directions of those or-

thonormal vectors are defined as main directions. As we see, dif-
ferent speakers have different initial parameters 0Lw , 0La , 0Jl  
and 0Td , and the main directions also change across speakers. We 
recalculate these parameters at silence period of each speech ses-
sion. By introducing the initial parameters, we reduce the effects 
that are caused by the speakers’ variability in lips and tongue 
shapes and EMA coils’ position shift. Because of the symmetry of 
lips, we use Lw (lip width) instead of the DRD features of LR and 
LL on lx  directions. La (Lip aperture) is the combination of DRD 
features of LU and LD on ly  directions. Ja (jaw angle) is approx-
imation of the angle of jaw’s rotational movement. 

Generally speaking, the lips and tongue move slowly and 
smoothly, and the articulatory feature sequences should be low-
pass, however, the original EMA data contain high frequency com-
ponents [12]. Therefore, we smooth the DRD feature sequences 
with low-pass filter. Cutoff frequency of the filter was set to 15Hz. 
 

4. LIPS AND TONGUE MODEL 
 
We build 2D lips and tongue geometric models with B-spline 
curves, which will also be called curve models in the rest of this 
paper. The models consist of front lip model and lateral model. 
These models are abbreviated compared to 2D or 3D mesh models, 
but can perform well in showing animation for its clarity. As is 
shown in Fig. 3(a), the front lip model is constructed by four 
curves, two for upper lip and two for lower lip. There are four 

 
Fig. 1. EMA coil positions. 

 

Fig. 2. Initial positions of EMA coils and definition of main direc-
tions and normalization units for DRD features. 
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points that control these lip curves, corresponding to four EMA 
coils glued on the lips. Fig. 3(b) shows the lateral model, in which 
we use five curves to represent the surface of upper lip, lower lip 
and jaw, hard palate, lower teeth, and tongue in mid-sagittal plane, 
respectively. Each key point on those curves corresponds to the 
EMA coil on the corresponding position. Lip thickness is kept 
stable. The lower teeth curve will rotate rigidly with the jaw key 
point, and the hard palate curve is fixed. The front lip model is 
capable to show the deformation of lips in front view while the 
lateral model is capable to show the lips open and close move-
ments, lips extension, rotational up and down movements of jaw 
and deformations of tongue in the mid-sagittal plane. The deform-
able curves between the key points are interpolated by B-spline 
interpolation algorithm. Control points of B-spline are obtained by 
reverse the key points so that the B-spline will go through the key 
points. 

Because of the correspondence of the model key points and 
EMA coils, we define the main directions and normalization units 
of models using the same method as shown in Fig. 2 treating model 
key points as EMA coils. Initial parameters of the models are de-
cided by a real speaker’s organs (lips in the front model are scaled 
larger on its size). The key points’ positions in each frame can be 
calculated by an inverse process of the DRD features extraction 
method. Therefore, we can reconstruct the movement of lips and 
tongue through DRD features. 
 

5. GMM-BASED MAPPING 
 
We apply the GMM-based method to the inversion mapping. This 
method has been adopted for acoustic-to-articulatory inversion 
mapping in [9]. Let x  and y denote acoustic feature vector and 
articulatory feature vector (DRD feature vector in our case), re-
spectively. In this method, a GMM on joint probability ( , | )P x y   
is trained with the EM algorithm at the beginning, and the mapping 
function from an acoustic feature vector to an articulatory feature 
vector is 

( )
,

1

ˆ ( | , )
M

y
t t m t

m

y P m x E

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( ) ( )
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( | , )

( ; , )
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m t m m

t M
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


               (2) 

( ) ( ) ( ) ( ) 1 ( )
, ( )y y yx xx x

m t m m m t mE x                      (3) 

where the ˆty  is the predicted articulatory feature vector and tx  is 
the acoustic feature vector in frame t . The total number of mix-
tures is M. A set of model parameters   consists of weights, mean 
vectors and covariance matrices. The weight of the m-th mixture 
component is mw . The vectors ( )x

m  and ( )y
m  denote the mean 

vectors of the m-th mixture for x  and y , respectively. The ma-
trices ( )xx

m  and ( )yx
m  denote the covariance matrix of the m-th 

mixture for x  and the cross-covariance matrix of the m-th mix-
ture for x and y , respectively. 
 

6. EXPERIMENTS AND RESULTS 
 
6.1. Objective evaluation 
 
We use 393 pairs of acoustic-articulatory parallel data from our 
database in the experiments. Silence frames were removed from 
the database using a threshold-based silence detection method after 
the DRD features were calculated. Three male speakers and three 
female speakers are represented by M1, M2, M3 and F1, F2, F3, 
respectively. There are 9 different male-female groups. Each time, 
we chose one group’s data as test data and use the other four 
speakers’ data to train the GMM on joint probability, to make sure 
that both training data and test data were gender balanced. Full 
covariance matrixes were used in our experiments. The number of 
Gaussian mixtures was varied from 1 to 32 (1 2 4 8 16 32). We 
smooth the estimated DRD feature sequences with the same filter 
that used for input DRD features (cutoff frequency is 15Hz). Fig. 4 
shows the mean RMS error of estimated and measured DRD fea-
tures as a function of number of Gaussian mixtures, Fig. 5 shows 
the estimated and measured DRD features trajectories for a com-
pound vowel uttered by speaker M1. 
 
6.2. Subjective evaluation 
 
The inversion mapping is performed frame by frame in our scheme, 
which makes 100 DRD feature vectors per second. However, it is 
not necessary to use such a high frame rate in animation. We divid-
ed the estimated DRD feature sequences into animation frame, the 
frame length was set to 9 samples and the frame shift was set to 2 
samples. For each animation frame, we use the mean value of the 9 
samples to drive the models. The tongue’s upper surface curve 
would go cross the palate curve if features TT_y, TB_y and TD_y 

Table 1. Definition of DRD features. 
Feature Definition 
Lw (lip width) 0/ ( / 2)t tLL LR Lw  
La (lip aperture) 0 0(( ) ) / ( / 2)t t lLU LD y La Lw  



LU_z 0 0( ) / ( / 2)t lLU LU z Lw 


 
LD_z 0 0( ) / ( / 2)t lLD LD z Lw 


 

Jw (jaw angle) 0 0/tJ J Jl  
TT_y 0 0( ) /t tTT TT y Td 


 

TT_z 0 0( ) /t tTT TT z Td 


 
TB_y 0 0( ) /t tTB TB y Td 


 

TB_z 0 0( ) /t tTB TB z Td 


 
TD_y 0 0( ) /t tTD TD y Td 


 

TD_z 0 0( ) /t tTD TD z Td 


 

 

(a)                                      (b) 
Fig. 3. Lips and tongue models consist of B-spline curves. 
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are positive according the definition of DRD features. Therefore, 
we set the three features to zero whenever the estimated values are 
positive (which happens occasionally). 

In the subjective evaluation test, we use the mapping model 
trained by the data of speaker M2, M3, F2, and F2, and the acous-
tic signal of M1 and F1 were used to drive the models. The number 
of Gaussian mixtures was set to 8. Two groups of compound vowel 
were used in our test, and each of them consisted of 4 confusable 
compound vowels. We show the synthesized animations driven by 
one group of compound vowels uttered by one test speaker to 9 
subjects without audio each time, and let the subjects to label the 
animations with 4 optional pinyin symbols (each symbol may use 
only once). The subjects have not been trained on lip or tongue 
reading. Fig. 6 shows a series of frames that driven by the word 
“ia” uttered by a M1. 

Table 2 shows the ratios for each compound vowel be identi-
fied correctly by 9 subjects. The accuracies are much higher than 
random guess, except “ua” uttered by M1, which indicate that the 
animations are greatly helpful for identification of vowels when the 
acoustic signal is absent. Our test result agrees with the work by 
Badin [1] which also indicates that the visual information of lips 
and tongue can significantly improve the speech identification 
accuracy when the acoustic signal is absent. The results also prove 

that the curve model animations are similar with the movements of 
real human’s lips and tongue movements, so that we can identify 
them with our life experiences. 
 

7. CONCLUSIONS 
 
This paper presents an experimental study on speech visualization 
of lips and tongue. We propose DRD features as a bridge between 
different speakers’ EMA raw data and our curve models. Multi 
speakers’ parallel data are used to learn the GMM-based mapping, 
which makes the mapping speaker-independent. We can synthesize 
movements from speech signal of vowels uttered by an arbitrary 
speaker with this method, and the 2D animations we synthesized 
prove to be helpful for vowels identification, even though the B-
spline curves are not capable to show many details of the non-
linear deformation of lips and tongue. A larger database which 
consists of more speakers’ data is needed to make the performance 
of our system more stable, and more systematic tests are needed to 
evaluate the performance. It is also part of our future work to ex-
pand our scheme to syllable and continuous speech visualization 
for hearing aids. 
 

8. RELATION TO PRIOR WORK 
 
The work presented in this paper has focused on the visualization 
of articulators from acoustic signal frame by frame, while the work 
by Wang et al [6] visualize articulators in phoneme level. We use 
more than one speaker’s EMA data to learn the mapping, which is 
different from Ghosh and Narayanan [10] who propose a subject-
independent acoustic-to-articulatory inversion method. The present 
study is also related to articulatory model control with EMA data 
[1, 4]. The DRD features we proposed are inspired by the defini-
tion of face animation parameters (FAPs) [13]. 

 
Fig. 5. A sample of measured and estimated trajectory of DRD 
features of a compound vowel. 

Table 2. The identification accuracy of compound vowels by 9 
subjects given only synthesized animations. 

Test group 1 
Speaker ai ia ao ua Mean 

M1 0.56 0.44 0.89 0.22 0.53 
F1 0.78 0.67 0.56 0.78 0.69 

Test group 2 
Speaker ei ie ou uo Mean 

M1 0.67 0.44 0.56 0.56 0.56 
F1 0.78 0.56 0.67 1.00 0.75 

 

 

Fig. 4. Mean RMS error between measured and estimated DRD 
features as a function of number of Gaussian mixtures. The labels 
show the speakers whose data were used for test while the others 
were used to train the GMM on joint probability. 

 

Fig. 6. Four frames of synthesized animation that driven by “ia” 
uttered by M1. 
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