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ABSTRACT
This paper addresses the problem of locating phone bound-
aries without prior knowledge of the text of an utterance.
A biomimetic model of human auditory processing is used
to calculate the neural features of frequency synchrony and
average signal level. Frequency synchrony and average sig-
nal level are used as input to a two-layered support vector
machine (SVM)-based system to detect phone boundaries.
Phone boundaries are detected with 87.0% precision and
84.8% recall when the automatic segmentation system has no
prior knowledge of the phone sequence in the utterance.

Index Terms— Automatic segmentation, auditory mod-
eling, frequency synchrony, average signal level

1. INTRODUCTION

A “chicken and egg” dichotomy currently exists between au-
tomatic speech segmentation and automatic speech recogni-
tion. On one hand, speech recognition systems require accu-
rately segmented training transcriptions in order to recognize
the phone sequence. On the other hand, speech segmentation
systems require accurate knowledge of the phone sequence in
order to split the speech signal into its phonetic components.
The requirement that an accurate transcription must be avail-
able in order to segment speech is especially pernicious in the
study of under-resourced languages and dialects, for which
accurate pronunciation dictionaries may not exist. Improved
training of ASR based on small training corpora requires im-
proved segmentation of the available training data.

The human brain is the fastest, most accurate computer
with respect to cognitive tasks such as speech recognition and
speech segmentation. In the human auditory brainstem, the
speech signal is segmented before phones and words are rec-
ognized. The octopus cells in the cochlear nucleus detect
speech onsets [1] by detecting coincident firing of auditory
nerve fibers [2]. Subsequent processing in the lateral lemnis-
cus may also aid in the detection of sound onsets [3]. The
recognition of phones and words does not take place until the
signal reaches the auditory cortex and beyond [4].
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The human brain detects phone boundaries by first divid-
ing the speech signal into several thousand frequency chan-
nels [5]. Octopus cells detect synchrony between subsets of
these frequency channels [2]. Neurons in the lateral lemnis-
cus may detect the rate at which synchrony occurs1. Multi-
polar neurons in the cochlear nucleus also respond to signal
onsets [6] and encode signal level [7]. Signal level and rate of
synchrony are two important neural cues that humans use for
speech signal segmentation. Are these cues useful to comput-
ers?

This paper presents an automatic speech segmentation
system that estimates phone boundaries using the average
signal level and rate of synchrony. Average signal level and
rate of synchrony are calculated by a biomimetic model of the
human auditory system. The system presented in this paper
can accurately mark phone boundaries without prior knowl-
edge of the phone sequence that contained in the utterance.

2. PREVIOUS WORK

2.1. Auditory features

The Mel-frequency cepstral coefficient (MFCC) [9] and the
perceptual linear prediction (PLP) coefficient [10] are calcu-
lated by warping the frequency axis of the spectrum along the
Mel and Bark frequency scales, respectively. This warping
mimics the frequency resolution along the basilar membrane
(BM). The MFCC captures cochlear compression effects —
suppressing spectral variation in the higher frequency bands
— by taking the logarithm of the spectrum. The PLP at-
tempts to capture human frequency sensitivity and to simulate
the relationship between sound intensity and perceived loud-
ness. Both MFCCs and PLPs are commonly used features for
speech segmentation and speech recognition.

The Lyon [11, 12] and Seneff [13] auditory models emu-
late cochlear filtering using a bandpass filter bank. Both mod-
els emulate the transmission of cochlear filter outputs to nerve

1The lateral lemniscus is known to calculate the rate of sound position
change [8]. It is likely, though to the authors’ knowledge it has not been
shown, that the nucleus is also responsible for tracking the first derivatives of
other functions, such as synchrony.
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Fig. 1. The auditory model used for acoustic feature creation.
The signal x(t) is filtered by a head-related transfer function
(HRTF) and then separated into components using bandpass
gammatone filters (GTF). GTF output is used to create a tono-
topic map (MAP). A peak-picker (PP) is used to locate local
maxima. Synchrony (Sync) is calculated between the peaks.
The synchronous information is used to calculate the rate of
synchrony (Rate) and average signal level (AvgL).

responses. Additionally, the Seneff auditory model emulates
the synchrony detection that occurs in the cochlear nucleus.
Both models can be used for speech analysis.

2.2. Automatic speech segmentation

When neither phone sequence nor phone boundaries are
known, simultaneous phone recognition and automatic seg-
mentation on TIMIT yields error rates between between 45%
and 27% [14], e.g., Duskan and Rabiner segment TIMIT
utterances with 84.6% recall and with a precision of 75.0%
[15]. Prior knowledge of the phone sequence reduces the
segmentation error [16, 17].

3. AUDITORY FEATURE CREATION

Figure 1 shows the auditory model used to compute average
signal level and rate of synchrony. Components of this model
have been previously reported, e.g., the model can be used to
detect acoustic landmarks in a manner robust to changes in
the bandwidth and noise level of the speech signal [18]. This
section describes key features of the model.

Before a sound x(t) reaches the cochlea, it is filtered by
the head and outer ear. This head-outer ear filter is referred
to as the head-related transfer function (HRTF). The auditory
model uses the finite impulse response (FIR) HRTF measured
by Tidemann [19].

We model the frequency analysis performed by the basilar
membrane (BM) using a bank of N = 2760 parallel gamma-
tone filters designed according to [20]. The center frequen-
cies of the filters range from f1 = 60 Hz – f2760 Hz and
are spaced according to the equivalent rectangular bandwidth
(ERB) [21] scale. There are 100 filters per critical band. Fil-
terbank outputs are concatenated along the frequency axis to
form a tonotopic map. An example of such a map for the

Fig. 2. A topographic map of the bandpass filter output for
the utterance “ ice cream” spoken by subject MADC0 from
the TIMIT corpus. Darker regions are higher in amplitude.

Fig. 3. Local maxima from the tonotopic map of the sen-
tence “ice cream” produced by the speaker MADC0 from
the TIMIT corpus shown in Figure 2. Darker colors indicate
higher amplitude.

words “ice cream” is shown in Figure 2. We collect the fre-
quency, timing, and intensity level information at local max-
ima in the tonotopic map to both mimic the inner hair cells
and auditory nerve, and to create a sparse representation of
the signal. An example of this representation is shown in Fig-
ure 3.

The intensity level is calculated from the output of the
gammatone filters.

I(t, fm) = 20 log10

ym(t)

Yref

(1)

Here, I(t, fm) is the intensity level in decibels in the mth fre-
quency band at time t, ym(t) is the observed output at time t

from the mth filter given that a maximum has been found, and
Yref is the minimum detection threshold.

Level, frequency, and timing information are stored as a
sparse binary third order tensor A. An individual entry in A

is referenced by its time, frequency, and intensity level values
and A(t, f, i) ∈ {0, 1}. A value A(t, f, i) = 1 indicates that
we have detected a signal component at f Hz with level i dB
at time t.
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Fig. 4. Synchrony detection on the data in Figure 3 for the
words “ice cream” produced by the speaker MADC0 from
the TIMIT corpus. A dot indicates that synchrony between
frequency bands was detected at time t.

Fig. 5. Rate of synchrony for the data in Figure 4 for the
words “ice cream” produced by the speaker MADC0 from
the TIMIT corpus. Darker colored regions have a higher rate.

Synchrony is detected using the logical union (∪i) of the
binary variables A(t, f, i) over different values of i, and sum-
ming over a time-frequency window of duration Tw and over
Fw frequency bands. In other words,

Sw(t, f) =

Tw−1
∑

τ=0

Fw−1
∑

φ=0

∪Imax

i=Imin
A(t − τ, f − φ, i) (2)

and

Ow(t, f) =

{

1 Sw(t, f) > ρ

0 otherwise

where ρ is the minimum number of data points in a window w

required for synchrony to be detected. The optimum window
size was determined experimentally to be 3 ms by 0.6 ERB
with an optimum firing threshold of ρ = 2. The frequency
step is 0.2 ERB. The time step is 1 ms. This calculation mim-
ics the octopus cells in the cochlear nucleus. Synchrony de-
tector output is shown in Figure 4 for the words “ice cream.”

The rate of synchrony is determined as follows

ROw(t,f) =
1

τ(Ow(tm, f)) − τ(Ow(tn, f))
(3)

Fig. 6. Average signal level for the data in Figure 4 for the
words “ice cream” produced by the speaker MADC0 from the
TIMIT corpus. Darker colored regions have a higher level.

where τ(Ow(t, f)) = t, and Ow(tm, f) and Ow(tn, f)
are two chronologically ordered, nonzero instances of syn-
chronous activation, i.e., tm > tn. This calculation mimics
processing in the lateral lemniscus. The rate of synchrony for
the words “ ice cream” is shown in Figure 5.

The average spectral level is calculated as follows

Lw(t, f) =

∑Tw−1
τ=0

∑Fw−1
φ=0 I(t − τ, f − φ)

TwFw

(4)

Level is summed from all active points in a time-frequency
window of duration Tw and over Fw frequency bands. The
window size used to calculate average signal level is 3 ms by
0.6 ERB. This mimics the function of multipolar cells in the
cochlear nucleus. The average signal level of the words “ice
cream” is shown in Figure 6.

4. AUTOMATIC SPEECH SEGMENTATION

Six radial basis function (RBF) support vector machines
(SVMs) were trained using the TIMIT corpus to detect the
phone boundaries where one edge of the boundary belongs
to one of six different broad phonetic classes (stop closures,
fricatives, glides and liquids, nasals, stop releases, and vow-
els). The six RBF SVMs feed into a single SVM trained to
detect transition regions between phones.

The phone boundary detection SVMs were trained using
both MFCCs and the neural rate and level (NRL) features
described in this paper. Each frame of MFCCs contained
39 coefficients (including deltas, acceleration, and energy).
MFCCs were calculated using a 25 ms window with a time-
step of 5 ms. NRL features were calculated every millisecond
to match the maximal firing rate of the octopus cells in the
cochlear nucleus. The NRL feature vector is a 276 dimen-
sional vector composed of 138 instances of Ow(t, f) and 138
instances of Lw(t, f) for the window w at time t.

The training and testing input for the phone boundary de-
tection SVMs consists of feature vectors ~xt containing 11
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Table 1. Support vector machine frame classification ac-
curacy for stop closures (SC), fricatives (F), glides and liq-
uids (GL), nasals (N), stop releases (SR), and vowels (V).
Also shown is the frame classification accuracy for the
transition/steady-state region (R) classification SVM. Results
are shown for SVMs using both MFCCs and NRLs.

SC F GL N SR V R
MFCC 95.3 93.2 91.9 96.3 95.5 96.7 83.7
NRL 94.6 94.1 91.9 93.2 95.4 97.2 83.0

concatenated acoustic feature frames. The first frame in ~xt

was sampled at 50 ms before the phone boundary, the 6th
frame was sampled at the boundary time t, and the 11th frame
was sampled at 50 ms after the phone boundary; i.e., ~xt ≡
[~yt−50, . . . , ~yt, . . . , ~yt+50]. In other words, ~xt is created by
concatenating n acoustic feature frames on both sides of the
frame corresponding to the phone boundary ~yt, where the
time step between frames is 10 ms and the total number of
concatenated frames in ~xt is 2n + 1. The vector ~yt contained
either MFCCs or NRLs

The phone boundary detection SVMs were used to gen-
erate a discriminant function for every frame in every file
in the training corpus. The discriminant function was then
smoothed. The smoothed values at each time t were con-
catenated into feature vectors ~dt. These discriminant feature
vectors were used to train an SVM that classified frames as
either transitional regions between phones or as steady-state
regions. The input to the SVM classifier consisted of feature
vectors ~Dt = [~dt−30 . . . ~dt . . . ~dt+30].

The training corpus consisted of the SX TIMIT audio
files. The test set consisted of the SI TIMIT audio files. A to-
tal of 10000 training tokens (5000 boundary tokens and 5000
non-boundary tokens) were extracted from the training data.
A total of 8000 tokens (4000 boundary tokens and 4000 non-
boundary tokens) were extracted from the test set. Transition
classification SVMs were trained on 7500 transition tokens
and 7500 steady-state tokens. No tokens overlap between
either of the training and testing sets, respectively.

5. RESULTS

Phonetic boundary detection and transition classification
SVM accuracies are shown in Table 1. Precision, recall, and
F-score of the MFCC and NRL-based segmentation systems
are given in Table 2. A boundary is labeled correctly if the
generated label is within 20 ms of the manually labeled time.

The frame classification SVM was used to generate a dis-
criminant function for each utterance in TIMIT. An example
of such a discriminant function is shown in Figure 7. In the
figure, the discriminant function is positive whenever a frame
is classified as transitional. The phone boundary is deter-
mined by finding the start and end times of each transitional

Table 2. Precision, recall, and F-scores of the automatic
phone boundary detectors for the MFCC and NRL-based sys-
tems. Also shown are the precision, recall, and F-score from
[15] for the same task (DR). Precision, recall, and F-score
are calculated based on the numbers of detected, missed, and
inserted tokens reported in [15].

Precision Recall F-score
MFCC 20.8 16.5 18.4
NRL 87.0 84.8 85.9
DR 75.0 84.6 79.5
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Fig. 7. Top. A spectrogram of the words “ice cream.” Mid-
dle. The discriminant generated for the words using the
MFCC-based system. Bottom. The discriminant generated
for the words using the NRL-based system.

region and taking the average.
Despite the success of the MFCC-based SVMs (See Ta-

ble 1), the MFCC-based SVM discriminant function does not
convey an accurate representation of the phone boundaries
(See Figure 7). Key characteristics of the MFCC vector may
be similar between some boundary and non-boundary tokens.
This may cause the phonetic frame classifiers to generate
a large number of both false positives and false negatives.
These errors would then propagate to the second layer of the
system.

6. CONCLUSION

This paper presents a system that can accurately locate phone
boundaries without knowing the phone sequence. Such a sys-
tem is useful for the study of under-resourced languages, and
of other ASR tasks using small training corpora, for which ac-
curate pre-segmentation of the training corpus may improve
the ability of the ASR to learn good phone models. Future
research will focus on the use of these segmentation bound-
aries to improve training and test accuracy of large vocabulary
speech recognition.
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