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ABSTRACT

Typical supervised acoustic model training relies on strong top-down
constraints provided by dynamic programming alignment of the in-
put observations to phonetic sequences derived from orthographic
word transcripts and pronunciation dictionaries. This paper investi-
gates a much weaker form of top-down supervision for use in place
of transcripts and dictionaries in the zero resource setting. Our pro-
posed constraints, which can be produced using recent spoken term
discovery systems, come in the form of pairs of isolated word exam-
ples that share the same unknown type. For each pair, we perform a
dynamic programming alignment of the acoustic observations of the
two constituent examples, generating an inventory of cross-speaker
frame pairs that each provide evidence that the same subword unit
model should account for them. We find these weak top-down con-
straints are capable of improving model speaker independence by up
to 57% relative over bottom-up training alone.

Index Terms— speaker independent acoustic models, unsuper-
vised training, spectral clustering, top-down constraints

1. INTRODUCTION

The human speech recognition ability is acquired over several years
of exposure to caregivers who provide top-down supervision via lin-
guistic or visual context, enabling specialization to our native lan-
guage. Automatic speech recognition technology implements equiv-
alent top-down training mechanisms that rely on large, lexically tran-
scribed corpora and pronunciation dictionaries that relate the acous-
tic feature space to a phonetic inventory for subword modeling. In
the zero resource setting, we are without the requisite training mate-
rials and language-specific knowledge to provide this standard form
of top-down supervision. However, the past five years have seen
several efforts in developing scalable automatic approaches to dis-
covering repeated words and phrases in large speech corpora using
nothing but the raw feature vectors as input [1, 2, 3, 4, 5, 6]. While
these spoken term discovery methods are useful in their own right
for tasks like keyword search [7, 8] and topic discovery [9, 10], they
also automatically uncover valuable information regarding the lexi-
cal structure of the language.

In this paper, we are interested in using automatically discovered
lexical units to aid in unsupervised training of speaker independent
phonetic acoustic models. At the core of our proposed approach is
the assumption that word level patterns are easier to identify across
speakers than frame-level ones. Figure 1(a) shows spectrograms for
two examples of the phoneme /iy/, one spoken by a female and the
other a male. In isolation, the acoustic pattern similarity is not imme-
diately obvious. Figure 1(b) shows spectrograms for two examples
of the word encyclopedia spoken by the same male and female. At
the word level, the visual similarities are much more striking: we
see similar temporal alternation between voiced/unvoiced segments
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and low/high frequency energy, and we notice similar formant con-
tours even though the absolute formant frequencies are different. In
fact, the vowels of Figure 1(a) are none other than the first /iy/ seg-
ments from the two word examples of Figure 1(b). Our conclusion is
that fully unsupervised learning in speech should ideally begin at the
word level, where we have a better chance of discovering repeated
patterns across speakers. However, once we identify repetition at the
word level, we still need a mechanism for channeling that informa-
tion into the construction of a speaker independent subword acoustic
model for downstream recognition tasks.

In the present study, we take as given a collection of word seg-
ment pairs of the same unknown type and thus assume each also
has the same underlying subword unit sequence. Thus, if we per-
form a dynamic time warping (DTW) alignment of the constituent
feature vectors extracted for each word segment pair, we can ex-
pect corresponding frames to map to the same subword unit (or
at least the same posterior distribution across the subword units).
Here, monotonicity of the warping function will force phonetically
equivalent but acoustically dissimilar portions of the word segments
to align. We can channel these frame-level constraints to cluster
Gaussian components from a large universal background model of
speech, where each cluster defines a Gaussian mixture model that
corresponds to some speaker independent subword unit. In a series
of proof-of-concept experiments, where we use true word example
pairs as a noise-free proxy for the output of a term discovery sys-
tem, we demonstrate that the proposed weak constraint mechanism
can substantially improve speaker independence relative to bottom-
up training alone. Moreover, we find that the number of word level
constraints required to achieve a significant improvement is surpris-
ingly limited.

2. RELATED WORK

For more than a decade, the term unsupervised training in acoustic
modeling has referred to using lightly supervised models to gen-
erate noisy transcriptions for unannotated speech, which are fed
back for subsequent retraining [11, 12]. In the past five years,
however, truly unsupervised subword acoustic model training has
been attempted using various bottom-up strategies, including Gaus-
sian mixture-based universal background models [7], successive
state splitting algorithms for hidden Markov models (HMM) [13],
traditional estimation of subword HMMSs [14], discriminative clus-
tering objectives [15], and non-parametric Bayesian estimation of
HMMs [16]. These approaches are united by the fact that none
impose top-down constraints of any kind and thus exhibit limited
speaker independence properties.

Two more recent efforts have proposed using automatically dis-
covered words to constrain bottom-up unsupervised training proce-
dures. The first [10] uses an initial bottom-up model to tokenize
the speech; word discovery is subsequently performed using this
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Fig. 1. Cross-speaker word repetition is easier to identify than phone repetition. Shown are log power spectrograms for isolated phoneme (a)

and word (b) segments, spoken by a male and female speaker.

noisy 1-best tokenization, an order of operations that can obscure the
speaker independence of whole word acoustic patterns. The direct
precursor [17] to this paper uses automatically discovered clusters of
word examples to train whole word HMMs with Gaussian mixture
emission densities and then clusters HMM states across the word
models to produce context independent subword unit models. While
successful, the main limitation of that approach was that several ex-
amples of each automatically discovered word type were necessary
to construct the whole word model, meaning if a word was only ut-
tered a few times it could not contribute. Moreover, only speech
contained in the repeated word segments could contribute to model
parameter estimation. Our proposed method circumvents these lim-
itations by (i) using the entire speech collection to estimate a large
universal background model and (ii) using individual repeated word
segment pairs to partition UBM Gaussians into subword unit GMMs.

3. UNSUPERVISED TRAINING ALGORITHM

Like its predecessor in [17], our present strategy for learning speaker
independent subword acoustic models is to discover repeated word-
level patterns in the raw acoustic stream and use them to constrain
unsupervised clustering in the acoustic space. Thus, we require a
large collection of untranscribed speech for unsupervised training.
Given this data, the proposed training procedure consists of four
steps (see Figure 2): (1) train a large GMM-based universal back-
ground model (UBM) using a large sample of in-domain audio; (2)
run a spoken term discovery system, such as that presented in [6],
across the speech collection to produce a collection of word segment
pairs and compute UBM posteriorgrams for each segment; (3) per-
form a DTW alignment of the acoustic frames of each word segment
pair and use the corresponding posteriorgram frame pairs to con-
struct a similarity matrix over UBM Gaussian components; and (4)
using spectral clustering, partition the UBM Gaussian components
and use each subset to define a subword unit GMM. Our focus in
this paper is the efficacy of the top-down constraints, so we will take
as given the collection of same word segment pairs of the form pro-
duced by a spoken term discovery system. Recent improvements in
term discovery scalability [6] support obtaining an arbitrarily large

number of word segment pairs. However, we evaluate performance
as a function of the number of these pairs in order to understand
better how many will be required for decent performance.

3.1. The Universal Background Model

Given a large collection of untranscribed speech audio, the first step
is to compute a short-time feature vector time series representation
(e.g. PLP or MFCC) of the form X = z1x5 ... 27 where z; € R?,
and train in a completely bottom-up fashion a large universal back-
ground model for all speech (and silence) content using maximum
likelihood estimation. We define our UBM to be a Gaussian mixture
model with C components of the form

C
P(x) =Y 0N (@ pie, Se), 6))
c=1

where {a.} are the mixture weights and N (z; pic, Xc) is the d-
dimensional multivariate normal for the c-th UBM component with
with mean p. and covariance matrix .. For C' sufficiently large,
each Gaussian component will cover a region of the acoustic feature
space that corresponds to some speaker- and/or context-dependent
subword unit. Nevertheless, the UBM is a soft vector quantization
that provides sort of crude acoustic model that imposes a categor-
ical structure on the acoustic space for various downstream tasks,
e.g. [7, 18, 8]. Given its usage in previous efforts [7, 16], the UBM
will serve as our baseline for our speaker independence evaluation
in Section 4.

3.2. Partitioning UBM Components

Our top-down constraints come in the form of a collection of N re-
peated word segment pairs, which we denote {(X;, Y;)}/_,, where
Xi=x122... 24, fora; € Reand Y; = Y1y2 ...yB, fory; € R¢
are the acoustic feature vectors for the i-th pair. We can convert each
word segment pair into a collection of frame-level correspondences
by performing a dynamic time warping alignment [19] using cosine
distance as the frame-level metric. Taken together, the N word seg-
ment pairs produce F' frame pairs of the form F = {(x,y:)} 11,
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Fig. 2. Training algorithm schematic.

where x;,; € R%. Note that time warping tolerated by the align-
ment means that while each frame pair is unique, each individual
frame can occur in multiple frame pairs (limited by the natural vari-
ation in phone duration).

The next step is to relate the frame level pairs F to the com-
ponents of the UBM for subsequent partitioning. At a high level,
each speaker independent subword unit will consist of a subset of
the Gaussian components of the UBM that tend to simultaneously
activate for frame pairs in 7. We can obtain the requisite UBM com-
ponent co-occurrence statistics as follows. For each (:1:2-, yi) c F,
we can compute the posterior distribution over the UBM components
for a given acoustic frame x by

Plela) = — 2 @ike )
ZC/:1 N(mv My Ec’)
where we have assumed a uniform component prior by discarding
the GMM mixing weights {a.}. We can then compute an aggregate
C x C (soft) co-occurrence matrix between UBM components by

; ©))

Soimy Pler|zi)P(ealy:) 7
(S0, Plerlz)] [S8 Plealys)]

which has been normalized by the expected counts of each UBM
component. The goal then is to partition the set of UBM components
such that pairs of UBM components that have high values in S fall
into the same subset.

Having demonstrated success in a similar setting [17], we use
spectral clustering to derive the partition into K subsets as follows
First, the co-occurrence matrix .S is used to define a weighted undi-
rected graph with C' vertices, each corresponding to a single Gaus-
sian component of the UBM. Each matrix element S;; specifies the
edge weight between the vertices corresponding to the i-th and j-th
component. Unlike more common agglomerative techniques, spec-
tral clustering attempts not to just group vertices that are directly
similar, but also those that are connected by paths of high similarity.
Given a desired number of clusters K, we implement the spectral
clustering variant of [20]:

S(er,c2) = 3

1. Compute the unnormalized graph Laplacian L = D — S, where
D is the diagonal matrix with elements D;; = > ; Sij, the de-
gree of the ¢-th vertex.

2. Solve the generalized eigenvalue problem Lv = ADw, for the
first K eigenvectors {v1, ..., vr }, where each v; €RC.

3. Representing the ¢-th vertex (and thus the <-th UBM component)
by its graph spectrum u; = (v1[i], v2[i], . .., vk [i]) € R, per-
form K-means clustering of the points {u1, uz,...,uc}.

The K-way clustering of vertices corresponds to a K -way parti-
tion of the Gaussian components. Each subset of Gaussian com-
ponents itself then defines a Gaussian mixture model, where we as-
sume a uniform mixture weight on each component. In this way, we
have transformed the speaker dependent UBM into a collection of
K Gaussian mixture models, each corresponding to a subword unit
that we will demonstrate below in Section 4 exhibits substantially
improved consistency across speaker relative to the UBM.

4. EXPERIMENTS

We perform several experiments to evaluate the speaker indepen-
dence enabled by the proposed weak top-down constraint mecha-
nism. We use a training set of cepstral mean and variance normalized
perceptual linear prediction (PLP) features [21] corresponding to 40
hours of speech (180 conversations) from the Switchboard corpus of
English conversational telephone speech. Our implementation de-
tails for the evaluation are as follows:

(a) Building the universal background model: GMM-based
UBMs are trained bottom-up using maximum likelihood (ML)
estimation. Starting with a single Gaussian component, training
proceeds by interleaving Gaussian splitting and expectation-
maximization re-estimation steps, which are performed until the
desired number C' of mixture components is reached. Diagonal
covariance matrices are used in all cases. The GMM models are
trained on only speech regions of the training corpus as identi-
fied by an neural network based speech activity detector [22].
We train baseline UBMs for C' = 50, 100, 150, 200 and 1024
components, where we assume each component corresponds to
some speaker- and/or context-dependent subword unit.

(b) Deriving frame-level correspondences: In practice, our word
segment pairs can be generated using a scalable spoken term dis-
covery algorithm such as that described in [6]. For the present
evaluation, we forgo automatic discovery to limit extrinsic error
sources and instead extract word segment pairs from a forced-
alignment of the transcripts for the 40 hour train set. Restrict-
ing ourselves to word segments of at least 0.5 seconds in du-
ration and 5 characters as text (the approximate bounds nec-
essary for reliable term discovery [6]), we are left with nearly
N = 100,000 same-type word segment pairs. Using DTW
alignment of the PLP features for each pair, we generate ap-
proximately F' = 7 million frame-level correspondences. We
evaluate performance using all 100,000 word pairs, as well as
for random subsamples of sizes N = 10,000, 1,000, and 100.

Partitioning UBM components: Next, we compute posterior-
grams using the 1024-component UBM for each word segment

(©)]
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pair according to Eqn. 2. Given the frame-level correspondences
and the UBM posterior distribution for each frame, we populate
the aggregate soft co-occurrence matrix using Eqn. 3. Since
C = 1024, this produces a 1024x1024 similarity matrix, which
defines the graph edge weights for spectral clustering of the
1024 Gaussian components into K subsets. We consider clus-
terings into K = 50, 100, 150, and 200 classes. Analogous to
the UBMs constructed in Step (a), we treat each subset of the
partition as model for some subword unit.

After training both baseline UBMs and weakly constrained models,
we proceed to generate posteriorgrams for evaluation. For the base-
line UBMs trained in Step (a), frame level posteriors are computed
using Eqn. 2. Posteriors for the weakly constrained models are gen-
erated by collapsing the 1024-component UBM posteriors according
to the partitions learned in Step (c) for various values of K.

Our goal is to evaluate these acoustic model posteriorgrams
for suitability in downstream multi-speaker search and recognition
tasks. In [23], a procedure was proposed to evaluate the quality
of speech representations in the absence of a strict phonetic inter-
pretability. It uses a large collection of presegmented word examples
and computes the DTW distance between all example pairs, quan-
tifying how well it can differentiate between pairs of same and
different type. Average precision (AP), defined as the area under
the precision-recall curve, is used to summarize performance over
all DTW threshold operating points. Since the word examples are
drawn from a wide range of speakers, this AP metric measures rep-
resentational consistency across speaker. Moreover, in the case of
supervised acoustic models, it was demonstrated the AP is perfectly
correlated with phone recognition accuracy. This makes the AP
metric an appealing proxy when evaluating unsupervised acoustic
models, since calculation of phone recognition accuracy becomes
impossible. Our instantiation uses 11K word examples drawn from a
portion of the Switchboard corpus that was distinct from the 40 hour
training set described above. These 11k examples result in 60.7M
word pairs of which 96K are same type pairs across a wide variety of
speakers (only 3K same-type pairs are from the same speaker). Co-
sine distance is the frame-level metric for the PLP baseline, while a
more meaningful symmetrized Kullback-Leibler divergence is used
for acoustic model posteriors (both supervised and unsupervised).

Table 1 summarizes the performance of 4 different feature rep-
resentations on the evaluation set. These include raw acoustic fea-
tures (PLP with mean/variance normalization), posteriors from the
UBMs with various numbers of components, posteriors from the
weakly constrained models with various number of unit clusters,
and phoneme posteriors from fully supervised neural network (“En-
glish NN”) acoustic models [23] trained on both 10 and 100 hours.
Although the baseline UBM posteriors are only marginally better
than raw acoustic features, the weakly constrained model posteriors
show significant gains over bottom-up training alone. With com-
parable posterior dimension (i.e. for K = (), we find our weak
constraints provide relative improvements in average precision rang-
ing from 21%-57%. Since average precision has been demonstrated
to be very well correlated with phone recognition accuracy for su-
pervised models [23], these relative improvements can be thought
of in accuracy terms as well. While there is still a substantial gap
between the weak and strong top-down supervision, our proposed
method bridges 37% of the gap between the UBM and 10-hour NN
performance when C' and K are both 100. Note that optimal per-
formance occurs when C' is approximately 2-3 times the number of
phones, indicating the discovery of units akin to phone tristates. As
such, integrating temporal continuity constraints via more sophisti-
cated bottom-up models (e.g. [16, 13]) is a logical next step.

Table 1. Average precision (AP) performance on the word matching
task for the baselines (unsupervised UBM and supervised English
neural network) and proposed method, considering various values of
C for the baseline UBM experiments and units target units K using
the proposed top-down constraints. The best unsupervised perfor-
mance is highlighted in boldface.

Features AP
PLP w/MVN 0.194
UBM, C'=50 0.151
UBM, C=100 0.196
UBM, C=150 0.207
UBM, C' =200 0.222
UBM, C'=1024 0.222
UBM-1024 + Constraints, K =50 | 0.238
UBM-1024 + Constraints, X =100 | 0.286
UBM-1024 + Constraints, KX =150 | 0.275
UBM-1024 + Constraints, X =200 | 0.270
English NN, 10 hr 0.439
English NN, 100 hr 0.516

Table 2. Average precision (AP) performance on the word matching
task for the proposed method (K = 100) as a function of various
values of /V and F', the number word-level and corresponding frame-
level top-down constraints, respectively.

N F AP
10° | 7x10° | 0.286
10* | 7x10° | 0.284
10% | 7x10* | 0.266
10% | 7x10% | 0.206

In a second set of experiments, we vary the number of word-
level constraints and, consequently, the number of frame-level con-
straints that we impose. Table 2 shows performance as the con-
straints are reduced by several orders of magnitude, while keeping
the number of clustered components at the optimal value of 100. We
find that with as few as 1,000 word pairs we can still observe a sig-
nificant improvement over both the raw feature performance and the
baseline UBM performance. To put these numbers in context, the
term discovery system presented in [6] can easily process hundreds
of hours of speech, producing millions of candidate word segment
pairs. While false alarms will be present, this level of scalability
permits confidence thresholds to be set as high as necessary and still
recover sufficient word pairs to achieve the gains demonstrated here.

5. CONCLUSIONS

We have presented a new strategy for unsupervised learning of a sub-
word acoustic model that tempers bottom-up EM training with weak
top-down lexical constraints generated by unsupervised term discov-
ery systems. In the absence of transcribed speech and pronunciation
dictionaries, these constraints provide substantial speaker indepen-
dence gains over bottom-up training alone. In future work, we will
explore the complementarity of our top-down constraints with more
sophisticated bottom-up modeling techniques, e.g. [16, 13, 24], to
help bridge the remaining gap between fully supervised methods.
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