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ABSTRACT

Large corpora of transcribed speech are rare and expensive to ac-
quire, but valuable for ASR systems. Of current research interest
are corpora of natural speech, i.e. far-field recordings of multi-
ple speakers in noisy environments. In the big data era there are
many speech transcriptions collected for purposes other than ASR,
which omit features required by typical ASR systems such as tim-
ing information. If we could recover training data from such ‘found’
corpora this would open up large new resources for ASR research.
We present a case study for this type of data recovery – becoming
known as ‘lightly supervised learning’ – for a highly damaged cor-
pus called Family Life. We use a novel comparison of a parallel
decode and forced audio alignment to iteratively select and grow
good data. Family Life also has unusual data mislabelling problems
which can be addressed by an integrated tfidf approach. These meth-
ods reduce WER on the corpus from 83.0 to 57.2. We also discuss
a probabilistic loose string alignment approach which removes un-
transcribed ‘icebreaker’ speech.

1. INTRODUCTION

The UK Economic and Social Data Service (ESDS) contains around
5,000 data collections from social science studies from the 1960s
to the present day, including raw audio interviews and transcripts.
We work with one called Family Life[13] as a case study, showing
how timing information can be recovered from a corpus where dam-
aged and permuted text is wide-spread and long audio recordings do
not come with any timing annotations. This opens up Family Life
and similar corpora for use in social-, market- or other corpus-based
analysis as well as turning them into resources for speech technol-
ogy development - for example automatic speech recognition (ASR).
Our aim is to retrieve good timing annotations on a word level for as
much data as possible. We take a bootstrapping, iterative approach
which alternates between forced audio alignments and training to
grow the amount of data that can be aligned and improve trained
models in the process. This paper tests a sequence of variations of
increasing complexity on this strategy: first a basic form; then ex-
tending to handle Family Life’s tape labelling permutations and an
approach combining audio alignment with parallel biased decoding
to select only good aligns for training.

Our method is closely related to other recent experiments in
lightly supervised training. The field tends to use the same set of
components – forced and loose alignments; text and audio align-
ments; scoring and iteration – in various architectures to approach
the problem in different ways. [2] ran biased decodes, forced align-
ment between the decodes and transcripts, then loose audio align-
ment to the segmented decodes. [6] use manual annotation as a
seed, then iteratively run biased decodes and trains directly from the
decoder output. [8] run a biased decode then forced-align the au-
dio to the decode. [15] use a loose audio alignment. Systems have
mostly been developed on clean audio – lectures, broadcast news

and audio-books – which lack the range of noise and tape labelling
permutations of Family Life, so yielding better performance (lower
word error rates) than we expect for Family Life. However our aim is
not to recognise the audio especially well, but to achieve confidence
in as many aligned hours as possible. In contrast to these systems,
we deploy parallel forced audio aligns and decode, then compare
them to select training data, and iterate. (Less related approaches
have also used techniques such as SVMs[10], factor automata [7]
and machine translation [5].)

2. THE ESDS FAMILY LIFE CORPUS

Family Life is a set of one-on-one interviews with elderly people de-
scribing life in the UK between 1900-1918, made in 1967[14, 13].
There were 452 interview subjects, and interviews last for around
3 hours. There total audio amounts to 1,354 hours, almost all is
speech, all interviews are transcribed. Multiple transcribers used
different conventions for fragments, dialect words, and non-speech
annotations. The recordings were made with mono microphones on
analogue tapes of various lengths, most commonly 45, 30, 15 and
60 minutes1. Not all tapes are filled with data: Some interviews use
up whole tapes and continue immediately on the next one; others
terminate the interview part way through a tape and begin on a new
one, possibly on a different day. Interviews typically comprise 3 or
4 tapes (10 maximum), digitised to 44.1kHz stereo wav files.

Interviews are loosely structured over a set sequence of topic
themes, such as school, religion, work. Questions are not prescribed
but the corpus comes with an interviewer guide-sheet, giving an or-
der in which topics are likely to occur. There are 44 named inter-
viewers, conducting 8.2 ± 7.2 interviews each. A further 84 inter-
views are conducted by unknown interviewers. The 452 subjects are
from 11 UK regions, with 40.8± 17.0 subjects per region. 230 sub-
jects are female, 222 male, of ages 72 ± 7 years. An A-G social
class is provided for each subject, with 64.5± 35.9 subjects in each.
Other data provided includes rural/urban environment; marital sta-
tus; job description and category; interview location. Being recorded
in the 1960s with elderly subjects, the diversity of accents is notably
greater than in modern recordings. Most subjects have strong re-
gional accents, usually related to the interview region, where many
have lived all their lives; the interviewers are 1960s sociologists,
many having strong ‘received pronunciation“(RP) accents. A few
interviews are with non-native English speakers, sometimes in their
native language (e.g. Welsh) but transcribed in English.

2.1. Data issues

Many tapes begin with 30s-2mins of non-transcribed ‘icebreaker’
conversations, in which the interviewer tests the tape recorder, sets
the volume, and chats casually with the subject. Similarly, there are

1We use ‘tape’ to mean audio from one side of a two-sided cassette.
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many untranscribed utterances that we call ‘interjections’, including
prompts and repetitions by interviewers, and short remarks irrelevant
to the interview topic by the interviewee. Speech is far-field, the tape
recorder usually being placed on a table between interviewer and
subject; common background noises include traffic; ticking clocks;
furniture creaks. Most seriously, errors have been made in the tape
labelling and/or digitisation. For many interviews, one or more tapes
is either missing, permuted within the same interview, or permuted
with tapes across interviews. Around 20 interviews are missing all
transcripts or audio. As transcriptions were not made for ASR work,
they contain no timing information and do not even show the loca-
tions of the tape boundaries. In places, often near starts of tapes,
digitisation errors have resulted in tape noises and out-of-order au-
dio, for example playing the tape for 30s then rewinding or fast for-
warding it – putting the cued audio into the digitiser.

2.2. Processing

After text normalisation, the corpus contains 560598 script-style,
alternating lines between interviewer and subject. There are 11.4M
word tokens (59Mb text file), of 51,000 distinct words. Perplexity
of the corpus under a generic language model [1] is 144. 49% of
words only occur once, possibly due to many place names. An in-
dication of topics is given by the top nouns: YOU, ME, MOTHER,
SCHOOL, FATHER, PEOPLE, WORK, HOUSE, DAYS, CHIL-
DREN, THINGS, SUNDAY, FAMILY, PARENTS, CHURCH,
FRIENDS, JOB, MONEY, STREET, CLASS, BED, ROOM, BOYS,
SISTER, TEA, CLOTHES, WAR, LIFE, SHOP. Common non-
standard words include Scottish contractions (DIDNAE, COULD-
NAE) and terms and symbols for old English money.

Audio was down-sampled to 16kHz, 16bit and encoded as 12
PLP coefficients and c0 [3]. First and second order derivatives were
added forming a 39 dimensional feature vector. No further normali-
sation was applied. Using the meta-data, a test pool of 30 interviews
was selected automatically, having similar region, age, and gender
distribution to the full corpus. Two test sets consisting of different 5
minute extracts from each test pool member were constructed. They
were manually checked to remove permuted or otherwise damaged
interviews, and manually annotated with ground truth start and end
times. The remaining interviews form the training pool. Each step of
our process consists of creating a new time-annotated data set then
training new acoustic models. Standard 3-state left-to-right hidden
Markov Models (HMMs) are state-clustered phonetic decision tree
ties state with 16-component GMMs to model output probabilities.
Training follows a standard HTK mixup procedure [17]. Word error
rates (WERs) are obtained with NIST sclite [9]. Decodes are based
on HTK HDecode with per-interview biased language models built
from the transcripts with the SRI language model toolkit[11]. Each
alignment referred to is followed by a resegmentation step, cutting
into short utterances using silence detection.

3. BASELINE ALIGNMENT AND TRAINING

Initial experiments were performed using a basic iterative bootstrap-
ping approach as is commonly used to obtain acoustic models in a
new domain. This approach serves as baseline and illustrates the
complexity of the task at hand. Initially we have no knowledge of
timing information, and thus are unable to split the data into man-
ageable chunks (the length of interviews is up to 3 hours!). Thus
a rough alignment of the entire corpus is performed using an ini-
tial model set, M0, trained on 177 hours of timing-annotated general
meetings audio, recorded with close-talking microphones [1]. Once

a rough alignment was obtained, a first Family Life model, M1, was
trained. M1 is then used for alignment again, and the new alignment
is used to train a model M2.

In all of these iterations, we attempt to align all 452 interviews
using no prior segmentation – each is a single, 3 hour long segment
– and alignment often fails due to aforementined data issues. Results
are shown in table 1. Successful alignment, even with tight pruning,
does not imply that the aligned times are actually correct. A slightly
wider beam (400) than usual was chosen to allow alignments to re-
cover from gross mismatches between labels and acoustics. Such
settings are normal for a standard corpus. It is also important to note
that there is no guarantee that the same data aligning in iteration 1
does align again in the second round, though the size of of the train-
ing sets tends to grow overall tables columns ex,ai,ah). As shown
in the table, the better matching in-domain models allow this basic
scheme was able to grow the aligned data at each iteration, to 217 for
M2. However it was clear from a 94.4 test WERs that the training
is going wrong: incorrectly aligned interviews are being admitted to
training, and encouraging more incorrect alignments. Despite more
aligns, the test scores are worse than the 83.0 of M0, showing that
this basic iteration scheme is insufficient for this corpus.

4. HANDLING TAPE PERMUTATIONS AND BAD ALIGNS

An unusual cause of WERs in Family Life is its tape labelling errors.
Given the size of the corpus a fully automated method for correcting
such errors is desirable. There are three types of labelling error.
First, two or more tapes within the same interview may be transposed
or otherwise permuted (imagine the interviewer writing ’subject 453
side 1’ and ’subject 453 side 4’ on the wrong cassette sides, or the
digitisers making similar errors). Second, tapes between interviews
may be permuted (e.g. swapping ‘subject 68 side 3’ with ‘subject
96 side 2’). Third, sections of transcripts and audio are missing. A
more generic WER cause is failure of the basic iteration scheme to
converge on correct alignments, resulting in training on bad data.
We present methods for handling the most common, intra-interview,
permutation case, and for filtering out bad alignments.

4.1. Tape label permutations

We assume audio and transcripts are complete and free of spurious
data, i.e. there exists a permutation of the tapes resulting in good
alignment. No timing information is available as initial forced align-
ments are unreliable, so the location of the tape boundaries in the
transcript is also unknown and needs to be estimated automatically.

For each permutation of the N tapes, the transcript is split into
N chunks corresponding to the tape lengths in such a way that they
have approximately the same lengths as the corresponding tapes un-
der that permutation. This is done by ensuring they have the same
ratios of number of words as the tape sides have of audio duration.
Each permutation of the transcript is then scored against a decoding
of the whole interview, here using the M0 model. To score, each
tape’s decoding is treated a query, q, in a term-frequency/inverse-
document-frequency [4] model,

tfidf(q, i, {docj}j) =
∑
w∈q

f(w, q)f(w, doci)

f(w, {docj}j)
, (1)

where f(w, d) is the frequency of word w in document or set of doc-
uments d, and doci is the ith segment of the hypothesised permuted
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Fig. 1. System architecture for showing iterations of parallel align-
ment and decoding; and training. Each iteration creates an enlarged
training set and better model.

transcript. A score sc is then assigned to a complete permutation,

sc(perm) =
∑
i

tfidf(qi, perm(i), {docj}j), (2)

where perm(i) is the permutation index for the ith segment of the
permutation, i.e. we sum scores for each decode segment in the
permutation. The best permutation for each interview is retained.

4.2. Filtering of mismatched audio

Another source of error occurs when alignments are very poor and
HMM training learns from inconsistent or mismatched data. We
saw that M1 and M2 align increasing quantities of data but with
poor WERs suggesting that training on either aligns or decodes from
these models – as in previous systems – is counterproductive. Un-
der normal circumstances HMM training is known to recover well
from such situations, but if the amount of badly aligned data is too
large, significant modelling errors occur and compound. From a data
selection perspective the outcome of each interview’s alignment is
binary: it either survives or it fails. However, we may look for sub-
regions within an interview that appear to be well- or badly aligned.
For those that align mismatched data can be filtered using output
from recognition of the training set. A full decode of all interviews
is obtained alongside the forced alignment. This is followed by
standard DP alignment between the two time-segmented sequences.
Rather than using word error rates of whole segments, we define a
smoothed, per-word temporal matching error rate, TMER, by

TMER[t] =
1

N

t∑
t′=t−N

(C[t′]− S[t′]−D[t′]− I[t′]), (3)

where C,S,D and I are Boolean functions indicating correct, sub-
stitutions, deletions and insertions, and t ranges over the union of
decoded and transcript words from the scoring. On inspection, as in
fig. 2, the TMERs typically fall into two regimes – aligning and not-
aligning – for most interviews, with a typical interview beginning
with successful alignment, then losing tracking for a while, then per-
haps regaining it again. The TMER in the non-aligned sections is
expected to be roughly constant, reflecting the error rate of match-
ing random words to audio, while any parts that align will be sig-
nificantly better than this, reflecting the local word error rate. It was
found to be sufficient to simply filter segments on the basis of thresh-
olds on TMER values. Segments are assumed to be correctly aligned
when TMER[t] < −0.75, with N = 100.

Fig. 2. Typical TMER scores for three interviews, each plotted over
three hours.

A new new training set can be constructed based on TMER fil-
tering, discarding all bad permutations and badly aligned segments.
This leads to an extended version of the iterative bootstrap training
cycle used in the previous section, and show in fig. 1. Note that at
each iteration the best model so far is used to both forced-align and
decode the current best training set. The outputs of these processes
are synchronised by TMER to define a new, correct-align training
set, which then is used to train the iteration acoustic model.

4.3. Joint icebreaker removal and permutation repair

The tdidf approach to permutation detection makes a big approxi-
mation in estimating the tape boundaries in the reference text: it as-
sumes that the ratios of transcript words are equal to the ratios of the
audio tape lengths. This is unfounded when, for example, full tapes
are not used in interviews and there are many minutes of silence at
tape ends, or when long icebreakers or interjections occur in some
tapes. Icebreakers and interjections also reduce alignment quality, as
they are forced to align against transcripts that do not include them.

A more complex approach to permutation repair avoiding tape
boundary approximation, which could also handle icebreakers and
interjections as a side effect, is given by considering a further com-
bination of elements found in the reviewed previous systems: decod-
ing, loose alignment, and string alignment. Here we first run a full
decoding of each interview, then align the decode text to the tran-
script text to produce training data. String alignment is much faster
than audio alignment, and can be performed with loose string HMMs
that model permutation, icebreakers and interjections.

For each current transcription position, beginning at the tran-
script start, we built a loose HMM based on the transitions though the
reference text from that position, but with probabilities of word in-
sertions, deletion and substitution taken directly from previous NIST
scoring runs. Incorrect word observation distributions were mod-
elled by the first order corpus word distribution. The first state of
each HMM is modelled as an icebreaker state, having a large self-
transition (using an exponential prior with mean one minute ice-
breaker length) and generating all words from the corpus distribu-
tion. We then ran Viterbi alignment on each remaining tape decode,
and selected the best tape and alignment. This provides a greedy
O(N2) search over permutations, aligning one tape decode at a time
and finding precise tape boundary in the reference text at each step.
Some example aligned text from the model is shown in fig. 3.

4.4. Experiments

Interviews with more than six tapes and various data glitches were
removed due to the computational load of O(N !) tdidf search, so
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we ran on 287 interviews. First we tested the accuracy of the tdidf
algorithm itself. 74 interviews were reported to have incorrect per-
mutations (25%), 21 of which were human checked. Of these, 5
were inter-interview permutations where the algorithm gave correct
permutations; 1 was an inter-interview permutation reported as an
incorrect permutation; 8 were between-interview swaps; 2 were in-
terviews in Welsh language but transcribed in English. 5 were false
positives having high levels of tape and environmental noise and/or
strong dialects. (The algorithm may fail more when when there are
many tapes: if we further exclude the six-tape interviews we have 60
of 272 problems, or 22%). Of another human checked 21 interviews
reported with no permutation problems, 2 were false negatives (one
in Welsh and the other missing 10% of the audio at the end).

Applying tfidf permutation removal and TMER alignment fil-
tering in three iterations produced models M3-M5 whose results are
shown in table 1. These indicate that by removing both bad permuta-
tions and badly aligned segments we can construct improved models
(M5 WER of 63.6, vs M0 WER of 83.0) and alignments (165h from
M5 vs 104h from M0) of more of the corpus. This is in contrast to
the basic M1,M2 iterations, which aligned more (217h) data but ap-
parently converging incorrectly as evidenced by their large WERs.
However the iterative process appears to quickly reach a new local
minimum state where little further gains are available from itera-
tions (WER stuck at around 63), so a new technique is needed at
this stage. To escape from this local minimum, we tried to restore,
rather than discard, the badly permuted interviews. The best tfidf
score comes with an estimated (as the tape boundaries in the ref-
erence text are only approximate) permutation needed to re-order
the tapes correctly. We created a new, larger training set including
such repaired permutation, and performed two further iterations to
produce the M6 and M7 models whose results are shown in table 1.
Perhaps due to the crude approximation of tape boundaries, M6 does
not align a larger quantity of data than its predecessor M5 422h vs
424h), though the aligns are of higher quality as evidenced by the
increase in post-TMER data size (tsh of 273 vs 269) and improved
WER (57.2 vs 63.6).

Our present implementation of string based alignment removes
only icebreakers, not interjections, and has an implicit flat prior over
possible permutations. Beginning with decodes and NIST probabil-
ities from the M5 model (to enable comparison with the M6 tfidf
method) we aligned 426 hours of the training set and obtained a
WER of 76.1, a comparable performance to the M5 model on which
its decodes were based. This shows that the algorithm is working
but not yet very useful. Inspection of the aligns suggests that the
main failure case occurs for very damaged interviews: if string align
tracking is lost just once then both alignment and permutation es-
timation are irrecoverably destroyed, leading to worse training data
that the tdidf method. This could perhaps be corrected by using an
informative prior on permutations, so that when aligns give weak
likelihoods, the default ordering would be used (or the interviews
removed altogether, as for failed audio aligns in the tfidf/TMER ver-
sion.)

5. CONCLUSIONS

We have demonstrated two new methods to repair damaged tran-
scriptions having tape label permutations and no timing information,
and produced good alignments for a useful subset (273 hours) of the
natural speech Family Life corpus. We saw that simple forced au-
dio align and train iterations are not sufficient for highly damaged
corpora such as Family Life, but that by introducing a TMER-based
comparison between parallel decodes and forced-aligns along with

Table 1. Results. m=model; ai=number of aligned interviews;
ex=number of exits (interviews that previously aligned and now fail);
ah=aligned hours; adh=hours successfully aligned and decoded;
tsh=TMER-selected hours; I,D=insertion,deletion rates.

m ai ex ah adh tsh WER I D
M0 104 - 286 - (95) 83.0 9.9 15.5
M1 89 15 285 - - 95.7 5.7 23.7
M2 217 1 559 - - 94.4 3.9 24.1
M3 133 9 333 206 150 64.0 15.3 12.6
M4 153 5 385 231 158 63.1 17.0 11.0
M5 165 0 424 263 269 63.6 17.5 10.6
M6 167 0 422 406 273 59.3 9.7 18.5
M7 - - - - - 57.2 18.6 9.9

Fig. 3. String alignment. Green=correct, red=incorrect matches.
The vertical line in an interjection or icebreaker, which could be re-
moved on detection to match the transcript.

tfidf based permutation restoration, progress can be made.
Once a good model has been created from this process, the au-

dio alignment may be dispensed with and a loose string alignment
between decodes and transcripts used for lightly supervised training.
We have showed an implementation of this with a WER comparable
to the best audio/TMER approach, and seen that it shows potential
for further improvements by removing interjections and using infor-
mative permutation priors.

Our methods use similar building blocks to other lightly super-
vised systems: mixtures of forced and loose alignment; string and
audio alignments; data selection; in new combinations. The field
has not yet matured to running comparison studies between methods
and corpora but we suggest this as an important future topic.

6. ACKNOWLEDGEMENTS

Thanks to the ESDS hosted by the University of Essex in Colchester,
UK for access to the data. We benefitted from work by Vincent Wan
for initial investigations. Funded by EPSRC EP/I031022/1.

8089



7. REFERENCES

[1] Thomas Hain, Lukas Burget, John Dines, Philip N Garner, As-
maa el Hannani, Marijn Huijbregts, Martin Karafiat, Mike Lin-
coln, and Vincent Wan. The AMIDA 2009 Meeting Transcrip-
tion System. In Interspeech’10, pages 358–361, 2010.

[2] Timothy J. Hazen. Automatic alignment and error correction
of human generated transcripts for long speech recordings. In
Proceedings of Interspeech, 2006.

[3] Hynek Hermansky. Perceptual linear prediction (PLP) analysis
of speech. 87(4):1738–1752, April 1990.

[4] Karen Spark Jones. A statistical interpretation of term speci-
ficity and its application in retrieval. Journal of Documenta-
tion, 28(1):11–21, 1972.

[5] Tatsuya Kawahara, Masato Mimura, and Yuya Akita. Lan-
guage model transformation applied to lightly supervised train-
ing of acoustic model for congress meetings. In Proc. ICASSP,
2009.

[6] Jean-Luc Gauvain Lori Lamel and Gilles Adda. Lightly su-
pervised and unsupervised acoustic model training. Computer
Speech and Language, 16:115–129, 2002.

[7] Pedro J. Moreno and Christopher Alberti. A factor automaton
approach for the forced alignment of long speech recordings.
In Proceedings of ICASSP, 2009.

[8] Sabine Buchholz Norbert Braunschweiler, M.J.F. Gales.
Lightly supervised recognition for automatic alignment of
large coherent speech recordings. In Proceedings of Inter-
speech, 2010.

[9] National Institute of Standards and Technology (NIST).
Speech Recognition Scoring Toolkit (SCTK) Version 2.4.0. web
resource: http://www.itl.nist.gov/iad/mig/tools,, 2010.

[10] Kengo Ohta, Masatoshi Tsuchiya, and Seiichi Nakagawa. De-
tection of Precisely Transcribed Parts from Inexact Transcribed
Corpus. In Proc. ASRU, 2011.

[11] Andreas Stolcke. SRILM - An Extensible Language Model-
ing Toolkit. In Proc. Intl. Conf. Spoken Language Processing,
2002.

[12] Annika Hamalainen Antonio Calado Miguel Sales Dias
Daniela Braga Thomas Pellegrini, Isabel Trancoso. Impact of
age in asr for the elderly: Preliminary experiments in european
portuguese. In Advances in Speech and Language Technolo-
gies for Iberian Languages Communications in Computer and
Information Science, pp 139-147, 2012.

[13] P. Thompson and T Lummis. Family life and work experience
before 1918, 1870-1973. Economic and Social Data Service,
SN2000, 2002.

[14] Paul Richard Thompson. The Edwardians: the remaking of
British society. Psychology Press, 1992.

[15] Anand Venkataraman, Andreas Stolcke, Wen Wang, Dimitra
Vergyri, Jing Zheng, and Venkata Ramana Rao Gadde. An
efficient repair procedure for quick transcriptions. In Proc. In-
terspeech. ISCA, 2004.

[16] Ravichander Vipperla. Automatic speech recognition for age-
ing voices. PhD Thesis, Edinburgh University, 2011.

[17] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw,
XA Liu, G. Moore, J. Odell, D. Ollason, D. Povey, et al. The
HTK book. 2006.

8090


