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ABSTRACT

This paper describes a new sparse representation model for speech
that allows time warping as an extension to a recently proposed
sparse representations-based speech recognition system. This recog-
nition system uses exemplars to model the acoustics which are la-
beled speech occurrences of different length extracted from the train-
ing data. Exemplars are organized in multiple dictionaries on the ba-
sis of their class and length. Input speech segments are approximated
as a sparse linear combination of the exemplars using these dictio-
naries and a reconstruction error-based decoding is adopted in order
to find the best matching class sequence. With the current sparse rep-
resentation model using a dictionary and a weight vector to approx-
imate an input speech segment, it is not possible to compare input
speech segments with exemplars of different lengths. The goal of
this work is to introduce a novel sparse representation model which
allows time warping using a third matrix which linearly combines
consecutive frames in order to shrink or expand the approximation.
Preliminary results have shown the feasibility of the proposed sparse
representation model.

Index Terms— Exemplar-based speech recognition, sparse rep-
resentations, time warping

1. INTRODUCTION

Automatic speech recognition has been dominated by statistical
acoustic modeling tools, e.g. Hidden Markov models, for several
decades. The success of recently proposed speech recognition sys-
tems based on exemplar matching attracted considerable interest in
exemplar-based acoustic modeling as a viable alternative [1]. These
techniques use real speech data, either called exemplars or tem-
plates, to recognize unseen speech. Exemplars are labeled speech
segments such as phones, syllables or words, possibly of different
length, that are extracted from the training data. Each exemplar
is tagged with meta-information including speaker, environmental
characteristics and prosodic information. Inconsistent exemplar se-
quences, e.g. mixed gender exemplar sequences, can be penalized
based on the tagged meta-information during recognition. An input
speech segment can be classified by evaluating the labels of the
closest exemplars obtained using a distance metric.

Although exemplars provide better duration and trajectory mod-
eling compared to Hidden Markov Models, they are poorer in terms
of generalizability. To cope with this shortcoming, large amounts
of data are required to handle the acoustic variation among different
utterances [2]. Furthermore, the acoustic distance between the in-
put speech segments and exemplars is found using the dynamic time
warping algorithm (DTW). DTW is a well-known algorithm used
for matching frame sequences of different lengths in various appli-
cations such as speech recognition [3, 4, 5], image recognition [6],
audio classification [7] and data mining [8].

An alternative exemplar-based recognition technique is called
exemplar-based sparse representations (SR) in which the spectro-
gram of input speech segments are modeled as a sparse linear com-
bination of exemplars of the same length. SR-based techniques have
been successfully used for speech enhancement [9], feature extrac-
tion [10] and clean [11] and noisy [12, 13, 14] speech recognition.
We have recently proposed an SR-based speech recognition system
which uses exemplars of different length organized in separate dic-
tionaries on the basis of their class and length [15]. Compared to a
system using fixed-length exemplars stored in a single dictionary, us-
ing separate dictionaries for each class provides better classification
as input speech segments are approximated as a linear combination
of exemplars belonging to the same class only. We have also shown
that this system performs reasonably well under noisy conditions in
[16].

According to our knowledge, previous SR-based speech recog-
nition systems do not embody a time warping mechanism that al-
lows the comparison of the different-length segments. This paper
proposes a novel sparse representation model of speech that embeds
time warping in the previous model consisting of a dictionary and
a weight vector. Time warping is achieved by means of a sparsely
structured warping matrix that learns weights to linearly combine
corresponding frequency bands in consecutive frames. The design
of the warping matrix has to be handled carefully as too much flex-
ibility in time warping may lead to unrealistic warping. Therefore,
only a few successive frames should be combined to approximate an
input speech frame. Moreover, sparsity regularization is imposed on
the warping matrix to obtain linear combinations often dominated
by a single frequency band. This constraint results in approxima-
tions that are close to one of the actual frequency bands rather than
random linear combinations.

The proposed system differs from classical DTW in several
aspects. One main difference is that the proposed model performs
a frequency band-level warping by learning distinct weights for
each frequency band in a frame, whereas classical DTW provides a
frame-level mapping between the time axes. The proposed warping
scheme is expected to be more robust against spectral asynchronies,
i.e. channel effects in the form of frequency-dependent delays, as
it is able to compensate temporal jitters depending on the number
of linearly combined successive frames, e.g. when two successive
frames are linearly combined, a spectral asynchrony with temporal
jitter of a frame shift (typically 10 ms) can be handled. In this sense,
the proposed recognizer better models human hearing which is not
sensitive to spectral asynchronies up to 40 ms [17].

The rest of the paper is organized as follows. The proposed
sparse representation model allowing time warping is given in Sec-
tion 2. Section 3 explains the experimental setup and implemen-
tation details. In Section 4, we present the recognition results and
a discussion on the proposed model and its relations with classical
DTW is given. The conclusions and thoughts for future work are
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discussed in Section 5.

2. SPARSE REPRESENTATION MODEL OF SPEECH
WITH TIME WARPING

2.1. Previous Model

In the sparse representation model described in [15], the input seg-
ments are modeled as a linear combination of the exemplars that
are stored in the dictionaries. Each exemplar represents a certain
speech unit and the duration of each speech unit in the training data
is preserved resulting in exemplars of different lengths. Exemplars
spanning le frames are reshaped into a single vector with Fle time-
frequency cells where F is the number of frequency bands in a
frame. These reshaped exemplars are stored in the columns of the
dictionary Sc,le : one for each speech unit c and each length le. Each
dictionary is of dimensionality Fle×Nc,le where Nc,le is the num-
ber of available exemplars of class c and length le.

The baseline model approximates a reshaped input speech vector
yli of length Fli as a linear combination of the reshaped exemplars
of length Fle with non-negative weights for each class c:

yli ≈
Nc,leX
m=1

sm
c,lexm

c,le = Sc,lexc,le s.t. xm
c,le ≥ 0 (1)

where li = le and xc,le is an Nc,le -dimensional sparse weight vec-
tor. Sparsity of the weight matrix implies that the input speech is ap-
proximated by a small number of exemplars. The exemplar weights
are obtained by minimizing the cost function,

d(yli ,Sc,lexc,le) + Λ

Nc,leX
m=1

xm
c,le s.t. xm

c,le ≥ 0 (2)

where Λ is a scalar which controls how sparse the resulting vector
xc,le is. The first term is the divergence between the input speech
vector and its approximation. The second term is a regularization
term which penalizes the l1-norm of the weight vector to produce
a sparse solution. The generalized Kullback-Leibler divergence
(KLD) is used for d:

d(y, ŷ) =

KX
k=1

yk log
yk

ŷk
− yk + ŷk (3)

The regularized convex optimization problem can be solved us-
ing various methods including non-negative sparse coding (NSC).
For NSC, the multiplicative update rule to minimize the cost func-
tion (2) is derived in [12] and is given by

xc,le ← xc,le � (ST
c,le(yli � (Sc,lexc,le))) � (ST

c,le1 + Λ) (4)

with � and � denoting element-wise multiplication and division re-
spectively. 1 is a Fle-dimensional vector with all elements equal to
unity.

2.2. Proposed Model

To be able to generalize the approximation in Equation (1) to in-
put speech segments of length li for li 6= le, we introduce a sparse
warping matrix Dc,li,le of dimensionality Fli×Fle. For the sake of
conciseness, we use D, S, x and N to represent Dc,li,le , Sc,le , xc,le

and Nc,le respectively. This warping matrix linearly combines the
successive frames to shrink or expand the approximation ŷle = Sx.

Thus, a reshaped input speech vector yli can be approximated as a
linear combination of the time-frequency cells belonging to succes-
sive frames in ŷle for li 6= le,

yli ≈
FleX
n=1

dnyn
le = Dŷle (5)

where dn is the nth column of the warping matrix D. Combining
Equation (1) and (5), the complete model can be written as

yli ≈
FleX
n=1

NX
m=1

dnsn,mxm = DSx s.t. xm ≥ 0. (6)

The new cost function is comprised of three components,

d(yli ,DSx) + Λ

NX
m=1

xm + β

FliX
n=1

FleX
m=1

dn,m s.t. xm ≥ 0 (7)

where β is a scalar which control how sparse the resulting warping
matrix is. In this cost function, there is a second regularization term
which penalizes the l1-norm of the rows of the warping matrix to
induce sparsity. It should be noted that the structural sparsity of the
warping matrix limits the freedom in time warping by allowing only
a few consecutive frames with nonzero weights, whereas the regu-
larized sparsity implies that the linear approximation is dominated
by a single time-frequency cell obtaining a much larger weight com-
pared to the others. To minimize the cost function in Equation (7),
the multiplicative update rules given below are applied iteratively,

x← x � ((DS)T (yli � DSx)) � ((DS)T 1x + Λ) (8)

D← D � ((yli � DSx)(Sx)T ) � (1D(Sx)T + β) (9)

with � and � denoting element-wise multiplication and division
respectively. 1x is a Fle-dimensional vector and 1D is a Fli-
dimensional vector with all elements equal to unity. After each
iteration, the rows of the warping matrix D are normalized to unity
in order to avoid extremely small or large values in D and x. Ap-
plying these update rules iteratively, D and x become sparser and
the reconstruction error between the input speech vector and its
approximation decreases monotonically. A reconstruction error-
based decoding is applied to find the best matching class sequence
using dynamic programming. A known problem of sparse rep-
resentation approaches working on magnitude spectra is that the
silence exemplars are not recognized [12]. This is due to the fact
that silence is well-approximated by combining speech exemplars
with small weights, so all classes will score equally well. To over-
come this problem, reconstruction errors for the class representing
silence have to be compensated. The details of the reconstruction
error-based decoding and silence dictionary scoring can be found in
[15].

2.3. Designing the Warping Matrix

A warping function is defined as a mapping between the time axes of
two different patterns (exemplars and input speech segments in this
case) [3]. Such a function is expected to capture the spectral similar-
ities between two frame sequences with different durations. To pre-
vent unnatural mappings, some conditions are imposed on the warp-
ing function. The warping matrix discussed in Section 2.2 should
be properly designed so that it also satisfies these warping function
conditions, namely monotonicity, continuity, boundary, adjustment
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window and slope constraint conditions, which are defined in [3].
Monotonicity and continuity conditions prohibit warping backwards
and limit the number of skipped or stalled frames for two consecutive
input speech frames. Boundary condition implies matching the first
and last frame with the first and last input speech frame respectively.
The adjustment window constraint and slope constraint conditions
aim to confine the warping path by preventing too many successive
skips or stalls.

A warping matrix D of dimensionality Fli ×Fle linearly com-
bines the corresponding time-frequency cells belonging to consec-
utive frames in ŷle to approximate Fli input time-frequency cells.
Considering the aforementioned conditions, the initial D matrix is
composed of identity submatrices I of dimensionality F × F on the
diagonal and either sub- or superdiagonal depending on the sign of
li − le. For the case of li = le + 1,

D =

26666666664

I 0 0 · · · 0 0
I I 0 · · · 0 0
0 I I · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I 0
0 0 0 · · · I I
0 0 0 · · · 0 I

37777777775
(10)

and li = le − 1,

D =

26666666664

I 0 0 0 · · · 0 0 0
0 I I 0 · · · 0 0 0
0 0 I I · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · I 0 0
0 0 0 0 · · · I I 0
0 0 0 0 · · · 0 0 I

37777777775
(11)

The design can be generalized to any li and le, once the warping
matrix satisfies the warping conditions.

3. EXPERIMENTAL SETUP

3.1. Database

The exemplars used in experiments are speech segments extracted
from the clean training set of AURORA-2 database [18] which con-
tains 8440 utterances with one to seven digits in American English.
There are 4 clean test sets, each containing 1001 utterances and
recognition experiments are performed on these test sets.

3.2. Baseline System

Exemplars and input speech segments are represented in root-
compressed (with magnitude power = 0.66) mel-scaled magnitude
spectra. A 17 channel mel-scaled filter bank with triangular mag-
nitude response is computed from a spectral analysis with a frame
length of 32 ms and a frame shift of 10 ms. The first channel is
centered at 200 Hz and the last is at 3030 Hz.

The training data is segmented into the exemplars representing
half-digits by a conventional HMM-based recognizer. The system
uses 508 dictionaries belonging to 23 different classes. The mini-
mum and maximum exemplar lengths are 5 and 30 frames respec-
tively. Exemplars longer than 30 frames are removed to limit the
number of dictionaries. The baseline system uses 10,362 exemplars
in total including 260 silence exemplars. Λ is set to 2. The l2-norm

Table 1. Average word error rates obtained on four clean test sets
(SR: Sparse representations, TW: Time warping)

WER (%)
SR (baseline) 1.91
SR + TW 1.78
SR + TW + Sparsity (β = 10) 1.66
SR + TW + Sparsity (β = 20) 1.64
SR + TW + Sparsity (β = 100) 1.66

of each dictionary column and reshaped input speech vectors are nor-
malized to unity. Reconstruction error shows enough discrimination
among different classes after 50 iterations. Further details about the
baseline system can be found in [15].

3.3. Implementation Details

The proposed system is implemented in MATLAB and GPUs are
used to accelerate the evaluation of Equation (8) and (9). We have
not made the effort yet to design a dedicated implementation exploit-
ing the sparse structure of the warping matrix D, i.e. in our current
implementation the zero entries in D are reestimated as well. Avoid-
ing this is expected to reduce the simulation times significantly, but
requires a significant software engineering effort on a GPU, which
has not been performed to date.

4. RESULTS AND DISCUSSION

This section presents the preliminary recognition results obtained
using the proposed sparse representation model with time warping.
The experiments put more focus on the impact of sparsity regular-
ization imposed on the warping matrix rather than the relative per-
formance of different warping matrix designs. The recognition is
performed by approximating input speech segments of length li by
linearly combining the exemplars of length le = li, li ± 1 using the
warping matrices discussed in Section 2.3. These warping matrices
linearly combine time-frequency cells belonging to two successive
frames to approximate input speech frames except for the first and
last input speech frames.

The baseline system uses the sparse representation model de-
scribed in [15]. The WER obtained with the baseline system is
1.91% which is given in the first row of Table 1. The average
simulation time for the baseline system is approximately 3 sec-
onds/utterance. The proposed model with β = 0 performs better
than the baseline with a WER of 1.78% given in the second row. This
improvement comes with a great increase in the average simulation
time mostly due to the higher number of matrix multiplication in the
multiplicative update rules given in Equation (8) and (9). Recogni-
tion of each utterance using the proposed model takes 45 seconds
on average. After setting β to several nonzero values, β = 10, 20
and 100 in this case, the WER further reduces to 1.64% for β = 20.
This result shows the positive impact of imposing sparsity regular-
ization on the warping matrix combined with the structural sparsity.
This is due to the fact that one of the two time-frequency cells in
the consecutive frames gets a much higher weight than the other
resulting in a realistic approximation of the input time-frequency
cell. Furthermore, it is evident that the recognition accuracy does
not vary significantly for different β values. The results discussed
above prove the feasibility of the proposed model providing 14%
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relative improvement in the WER with time warping limited to a
single frame.

The time warping technique we have proposed is different from
classical DTW in several aspects. The main difference is that the
proposed time warping scheme learns distinct weights for each time-
frequency cell whereas classical DTW provides a frame-level map-
ping between the time axes. One way of adopting a frame-level
mapping in the proposed framework is to tie the time-frequency cell
weights which belong to the same frame, a constraint for which new
multiplicative update formulae have been derived and which will be
evaluated in our future work.

Another difference is that classical DTW applies dynamic pro-
gramming to obtain a warping path through the time axes of the
different-length segments. In our case, the complete warping path
is learned by fitting a product of matrices to the data. Finally, the
conditions on the warping function are imposed more explicitly in
classical DTW compared to the proposed approach. The only way
to impose these conditions in the proposed scheme is the careful de-
sign of the warping matrix. Even with a carefully designed warping
matrix, it is not possible to implement some slope constraints such
as Itakura constraint [19].

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a novel sparse representation
model for speech signals which allows time warping. This model
approximates input speech segments as a product of three matrices,
i.e. a sparsely structured warping matrix that linearly combines the
time-frequency cells of consecutive frames, a dictionary containing
exemplars that are extracted from training data and a weight vector
storing the exemplar weights. The design of the warping matrix is
of great importance to obtain realistic warping paths. Two warping
matrices are introduced for matching two frame sequences with a
single frame difference.

Applying this model to recognize digit sequences, we analyze
the impact of inducing sparsity in the warping matrix by penaliz-
ing the l1-norm of the rows of the warping matrix. The results have
shown that the proposed sparse representation model allowing time
warping provides 7% relative improvement in the WER compared
to a baseline system which compares input speech segments and ex-
emplars of the same length only. Moreover, the existence of sparsity
regularization improves the recognition further yielding a total rela-
tive improvement of 14%. This improvements come with a cost of
higher computational complexity increasing the average recognition
time by a factor of 15, though this number should be interpreted with
care given the current sub-optimal implementation.

Even though this preliminary work proved the feasibility of the
proposed model, there are still many open questions such as the dif-
ferent warping matrix designs and their effects on the recognition
accuracy, a detailed analysis of the effect of different sparsity factors
on the recognition accuracy, tying the weights of the time-frequency
cells belonging to the same frame to obtain a frame-level time warp-
ing and designing a dedicated implementation of the proposed model
which is expected to reduce the simulation times.
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