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ABSTRACT 
 
This paper presents regularized minimum variance 
distortion-less response (MVDR)-based cepstral features for 
robust continuous speech recognition. The mel-frequency 
cepstral coefficient (MFCC) features, widely used in speech 
recognition tasks, are usually computed from a direct 
spectrum estimate, that is, the squared magnitude of the 
discrete Fourier transform (DFT) of speech frames. Direct 
spectrum estimation methods (also known as nonparametric 
estimators) perform poorly under noisy and adverse 
conditions. To reduce this performance drop we propose to 
increase robustness of the speech recognition system by 
extracting more robust features based on the regularized 
MVDR technique. The proposed method, when evaluated 
on the AURORA-4 speech recognition task, provides an 
average relative improvement in word accuracy of 11.3%, 
6.1%, and 5.2% over the conventional MFCC, PLP, MVDR 
and PMVDR-based MFCC features, respectively. 
 

Index Terms— Speech recognition, spectrum 
estimation, regularized MVDR, linear prediction 
 

1. INTRODUCTION 
 
Speech spectrum estimation is a key first step in most 
feature extraction methods, e.g., MFCC or PLP, for speech 
recognition. The Mel-frequency cepstral coefficients 
(MFCCs) computed from a short-time direct spectrum 
estimate are the widely used feature set and have been 
empirically observed to be most effective for speech 
recognition, specifically, under controlled environments [1].  
Parametric as well as nonparametric methods of spectrum 
estimation have been studied for modeling speech signals. 
Nonparametric spectrum estimators, such as a discrete 
Fourier transform (DFT)-based periodogram or modified 
periodogram, are attractive as these estimators are 
completely independent of data and therefore do not suffer 
from problems arising from modeling deficiencies. 
However, these methods are not robust and therefore show 
poor performance in noisy and adverse conditions. Among 
the parametric spectrum estimators, the LPC (linear 
predictive coding)-based all-pole spectrum estimator is most 

widely used [1].  However, the LP-based cepstra are known 
to be very sensitive to noise. They tend to overestimate or 
overemphasize sparsely spaced harmonic peaks [7]. The 
standard feature extractors used for speech recognition are 
based on either DFT, e.g., MFCC or linear prediction, e.g., 
PLP. Both of the feature extractors are either not robust and 
therefore show poor performance under noisy and adverse 
conditions, such as MFCC, or ill-suited for the reliable 
estimation of the spectra of the speech signals, which is true 
for all methods using linear prediction envelopes [7]. In 
order to overcome the problems associated with linear 
prediction, namely, over-estimation of spectral power at the 
harmonics of voiced speech, the MVDR method was 
proposed in [2]. It is also known as Capon's method [1], for 
all pole modeling of speech. 
In this paper we propose to replace the traditionally used 
feature extractors by a feature extractor that is based on the 
regularized minimum variance distortion-less response 
(MVDR) spectral estimator. The MVDR spectral estimation 
overcomes the problems apparent in linear prediction 
spectral estimation and a regularization parameter penalizes 
rapid changes in all-pole spectral envelopes, thereby 
producing smooth spectra without affecting the formant 
positions [5, 6]. The MVDR spectral estimator has already 
been applied in speech recognition [4] and speaker 
identification [7] tasks. An extension of the MVDR method 
was proposed in [3] by warping the frequency axis with the 
bilinear transformation prior to MVDR spectral estimation. 
The perceptually motivated MVDR (PMVDR) front-end, 
proposed in [15], completely eliminates the auditory 
filterbank processing step and directly performs warping on 
the DFT power spectrum. In [5], the regularized LP (RLP) 
has been applied for speaker recognition. To the best of our 
knowledge, regularized MVDR has not been applied to any 
recognition tasks. Experimental results on the AURORA-4 
continuous speech recognition task show that the 
regularized MVDR-based MFCC features outperform the 
MFCC, PLP and MVDR-based MFCC features. 
  

2. SPECTRUM ESTIMATION 
 
Spectrum estimators are classified as parametric and 
nonparametric. The Discrete Fourier transform (DFT)-based 
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periodogram is an example of a nonparametric estimator 
and the LPC-based spectrum estimator is a parametric 
method.  
MFCC features are computed from discrete Fourier 
transform (DFT)-based windowed periodogram estimates 
given by 
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where f denotes the discrete frequency index, N is the frame 
length,  0,1,..., -1j N  is the sample index,  s j is the time 

domain speech signal and  w j denotes the time domain 

window function, e.g., Hamming. 
In the LPC (linear predictive coding) analysis the current 
value of the speech sample s(n) is obtained as a weighted 
sum of its p past samples as follows [13]: 
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where p is the model order,  
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is the predictor 

coefficients, and e(n) is the prediction error or residual. The 
spectrum of the LP method is then given by: 
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In the autocorrelation method the predictor coefficients 

 
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
is expressed as a solution of (2) as [14]: 
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where LPR and LPr represents the Toeplitz autocorrelation 

matrix and autocorrelation vector, respectively. 
 
2.3. MVDR spectrum estimation 
 
The Minimum Variance Distortionless Response (MVDR) 
spectrum estimator, introduced by Capon [1], is mostly used 
in array signal processing applications, and has also been 
investigated in relation to other applications such as speech 
modeling [2], robust speech recognition [4], and speaker 
recognition [5] systems. The MVDR spectrum is given by 
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where 1pR is the autocorrelation matrix,  fv =[1 
2i fe  4i fe  ... 2i pfe  ] is a frequency tuning vector with 

 fHv denoting its conjugate transpose. The model order p 

corresponds to the largest correlation lag in the 
autocorrelation matrix. Eqn. (5) represents the power 
obtained by averaging several samples at the output of the 
optimum constrained filter. This averaging results in a 
reduction of the spectral estimator variance [4, 14]. 
For computational purpose, the pth order MVDR spectral 
estimate can be parametrically written as 
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where the parameter  k of the MVDR method can be 

directly obtained using a non-iterative computation based on 
the LPC technique as: 
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where qa is the LP coefficients and e is the residual 

variance. 
From (6), the MVDR spectral estimator can also be viewed 
as an all-pole model based spectrum estimator. The MVDR 
all-pole filter is stable and causal and can be used in a 
manner similar to the way in which LP filters are used in 
speech processing systems.  
 
2.4. Regularized MVDR spectrum estimation 
 
Similar to the MVDR spectrum estimator, the pth order 
regularized MVDR spectral estimate can be parametrically 
written as 
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where the parameter  reg k of the regularized MVDR 

method can be obtained from a non-iterative computation 
using the regularized LP (RLP) coefficients reg

qa and the 

prediction error variance reg
e as: 
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Figure 1 Comparison of the estimated short-term spectra of a noisy 
speech signal frame (street noise 5 dB) using various spectrum 
estimators. For better visualization the spectra in each plot is 
shifted by 10 dB. Model order used is p = 100. The value for the 
regularization parameter  used for the regularized MVDR 
(regMVDR) estimator is 10-9. 

In RLP method, the predictor coefficients reg
qa are computed 

by adding a penalty measure, which is a function of the 
unknown predictor coefficients ra (  ra ), to the objective 

8072



function of the LP method and therefore minimizing that 
modified objective function of the following form [5, 6]   
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where regularization constant 0   controls the 
smoothness of the all-pole spectral envelope. RLP method 
penalizes the rapid changes in all-pole spectral envelope and 
therefore, produces a smooth spectral estimate keeping the 
formant positions unaffected. For more detail about the RLP 
method please see [5, 6]. Fig. 1 presents a comparison of the 
estimated spectra obtained by the various spectrum 
estimators described in this paper. It is observed from this 
fig. that compared to the periodogram, LP and the MVDR 
spectrum estimators, regularized MVDR method provides 
smooth spectral estimate. 



 

Figure 2 Block diagram of the regularized MVDR spectrum-based 
MFCC feature extraction process. Here we chose p = 100, and 

910opt  based on the recognition experiments. 

3. EXPERIMENTS 
 
The proposed feature extractor, as presented in fig. 2, is 
evaluated and compared with other feature extractors, 
namely, conventional MFCC, PLP and MVDR-based 
MFCC, on the AURORA-4 corpus in the context of speech 
recognition. Note that, for the extraction of PLP features, 
we have followed HTK-based processing [11], that is, for 
the auditory spectral analysis a Mel filterbank is used 
instead of a trapezoid-shaped bark filterbank. All feature 
extractors considered in this paper are implemented using 
the rastamat toolbox [10]. 
 
3.1. Experimental set-up 
 
The AURORA-4 continuous speech recognition corpus, 
derived from the Wall Street Journal (WSJ0) corpus, is 
divided into 3 sets, namely, training, development (dev test) 
and evaluation (eval or test) sets. This task is often referred 
to as the 5k closed vocabulary task, i.e., there are no out-of-
vocabulary words (OOVs) in the evaluation set. The 
training set contains 7138 utterances from 83 speakers, 
totaling 14 hours of speech data. 14 evaluation sets were 

defined in order to study the degradations in speech 
recognition performance due to microphone conditions, 
filtering and noisy environments. Each of the filtered 
versions of the evaluation set recorded with a Sennheiser 
microphone and secondary microphone was selected to 
form the two eval sets. The remaining 12 subsets were 
defined by randomly adding each of the 6 noise types (car, 
babble, restaurant, street traffic, airport, and train-station 
noises) at a randomly chosen SNR between 5 and 15 dB for 
each of the microphone types as mentioned above. The goal 
was to have an equal distribution of each of the 6 noise 
types and the SNR with an average SNR of 10 dB [8]. Each 
of the test sets contains 166 utterances from 8 speakers, 
totaling 20.69 minutes of speech data. The 14 test sets are 
grouped into the following 4 families [8, 9]: (a) Test set A - 
clean speech in training and test, same channel (set 1), (b) 
Test set B - clean speech in training and noisy speech in 
test, same channel (sets  2-7), (c) Test set C - clean speech 
in training and test, different channel (set 8), and (d) Test set 
D - clean speech in training and noisy speech in test, 
different channel ( sets 9-14). The number inside the 
brackets represents the test set number defined in the 
AURORA-4 corpus. 
For the continuous speech recognition task on the 
AURORA-4 corpus, all experiments employed state-tied 
crossword speaker-independent triphone acoustic models 
with 4 Gaussian mixtures per state. A single-pass Viterbi 
beam search-based decoder was used along with a standard 
5K lexicon and bigram language model with a prune width 
of 250 [8, 9]. 
For our experiments, we use 13 Mel-frequency cepstral 
coefficient (MFCC) features (including the 0th cepstral 
coefficient) augmented with their delta and double delta 
coefficients, making 39-dimensional MFCC feature vectors. 
The analysis frame length is 25 ms with a frame shift of 10 
ms. The delta and double features were calculated using a 5-
frame window. For all methods, extracted features are 
normalized using the conventional mean and variance 
(MVN) normalization technique over the whole utterance.  
 
3.2. Results and discussion 
 
In order to verify the effectiveness of the regularized 
MVDR-based feature extractor, speech recognition 
experiments are conducted on the AURORA-4 large 
vocabulary continuous speech recognition (LVCSR) corpus. 
Percentage word accuracy is used as a performance 
evaluation measure for comparing the recognition 
performances of the proposed method to that of the baseline 
feature extractors. The optimal model order p for the 
MVDR and regularized MVDR methods is adjusted to 
allow for highest speech recognition accuracy on the 
development test set of the AURORA-4 corpus. Fig. 3 
illustrates the influence of the model order on the spectral 
estimate of the speech signal. It is observed from fig. 3 that 
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a higher model order provides more detail of the fine 
structure of the spectrum and represents the 1st harmonic 
(or fundamental frequency), whereas a low model order 
results in a reduction of influence of the excitation and is 
more or less a representation of the vocal tract transfer 
function [7]. For our work the optimal model order is found 
to be p = 100. 

  
Figure 3 Influence of the model order p on the speech spectrum for 
the regularized MVDR method. The value for the regularization 
parameter  is 10-9. 

Fig. 4 presents the speech spectrograms of a noisy speech 
signal, corrupted with the street noise (SNR = 5 dB), 
obtained by the various spectrum estimators. It is observed 
from this figure that compared to the other estimators, both 
the MVDR and regularized MVDR methods result in a 
reduction of the noise while preserving the formant 
structure. We chose the optimal value for the regularization 
constant of the regularized MVDR method that provided 
the highest word accuracy on the dev-test set of the same 
corpus. The optimal value for the regularization constant is 
found to be 910 .opt   Table 1 depicts the word accuracies 

obtained by the different features on the various test sets, as 
described in section 3.1, of the AURORA-4 LVCSR corpus. 
The regularized MVDR spectral estimator-based feature 
extractor outperformed the other feature extractors in terms 
of the recognition word accuracy. The average relative 
improvements obtained by the proposed feature extractor in 
recognition word accuracy over the conventional MFCC, 
PLP, and MVDR-based MFCC feature extractors are 
11.3%, 6.1%, and 5.2%, respectively. 
 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4 Speech spectrograms, street noise, SNR = 5 dB, (a) DFT-
based periodogram, (b) LP, (c) MVDR, and (d) regularized MVDR 
spectrum estimators. 

Table 1 Word accuracies (%) obtained by the various feature 
extractors on the AURORA-4 corpus. The higher the word 
accuracy the better is the performance of the feature extractor. 

 Word Accuracy (%) 
 A B C D Avg. 

MFCC 90.02 49.19 71.12 35.44 61.44 
PLP(HTK) 89.72 50.41 74.44 39.64 63.55 

MVDR 89.47 52.10 74.51 39.60 63.92 
regMVDR 90.06 54.25 78.23 40.63 65.79 

 
4. CONCLUSION 

 
A robust feature extraction method for the large vocabulary 
continuous speech recognition (LVCSR) is described. The 
method incorporates the regularized MVDR spectrum 
estimator in the MFCC feature extraction framework. A 
regularization parameter used in this method helps to 
penalize the rapid changes in all-pole spectral envelopes, 
thereby producing smooth spectra without affecting the 
formant positions. Experimental results on the AURORA-4 
LVCSR corpus showed that the proposed feature extractor 
gave significant improvement in word accuracy over the 
baseline methods.  
 
Our possible future works are: 

 Adaptive selection of the regularization 
constant . 

 Incorporation of this regularized MVDR spectrum 
estimator in the feature extraction framework of 
[12] and [16]. 
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