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ABSTRACT

Language-independent embedded speech recognition is a
necessary and important application. Considering person-
al privacy, collection difficulty of all the reference word-
s, and limited storage space of mobile devices, language-
independent (LI) embedded speech recognition should be
classified into lightweight speaker-dependent (SD) cases.
Dynamic time warping (DTW) is the state-of-the-art algo-
rithm for small foot-print SD automatic speech recognition.
To decrease the high computational complexity of DTW, and
to avoid constraints-induced coarse approximation and in-
accuracy problems, we introduce a novel confidence index
dynamic time warping (CIDTW) approach. CIDTW defines
a new cost function, called the confidence index cost function
(CICF), to measure the similarity between merged speech
training and testing data, while follows the same DTW pro-
cess. With extensive experiments on three representative SD
datasets, CIDTW achieves better accuracy and overall six
times faster speeds compared with DTW.

Index Terms— language-independent and lightweight
speaker-dependent speech recognition, confidence index
DTW, confidence index cost function

1. INTRODUCTION

With the increase in connections across countries, the con-
tact information in mobile devices could include names of
people from many different countries. Therefore, language-
independent (LI) embedded speech recognition (SR) is criti-
cal. Most of the modern embedded SR applications of mo-
bile devices are speaker-independent (SI). SI applications are
based on Hidden Markov Model (HMM) [1], the accuracy
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of which is governed by the amount of training data. There-
fore, SI applications have to use a large SR server to store
the training data. When doing SR, all of the information in
personal mobile devices has to be uploaded to the remote S-
R server, which has an inherent risk of loss of personal in-
formation. Additionally, lack of training data in non-English
languages is the most important reason that these application-
s can not achieve a good accuracy when doing non-English
speech recognition. Due to personal privacy consideration,
and excessive time, storage and cost factors associated with
the collection of multi-language training data, we classify the
LI application as speaker-dependent (SD) application.

Considering that storage space of mobile devices and
personal information are limited, our goal is to develop
lightweight SD approach by using only one sample for each
word as training data. This approach can also be applied to
other similar real-time applications such as menu-driven
recognition, and voice control on vehicles and robotics.
While HMM needs sophisticated implementation of large-
scale software and lots of training data [2], DTW aims at
small-scale embedded systems (i.e., cell phones, mobile ap-
plications) with its simplicity in hardware implementation
[3]. Thus, we choose DTW for this work.

However, the time complexity of DTW is a limitation for
large databases [4, 5] and real-time applications. The basic
idea of DTW speed up is to shorten the lengths of either or
both of the two processed speech signals. Many variation-
s have been proposed for accelerating DTW computing pro-
cess [6]. Be it lower bounding measure [7], global constraint
region usage [8], multi-scale DTW [9], or any other combina-
tion of the first two methods [10], they are all based on con-
straint algorithms in iterative fashion [11]. These algorithms
tend to have coarse approximation [13] and inaccuracy [9]
problems.

To avoid the above shortcomings of constraint algorithm-
s, we hereby propose a novel confidence index dynamic time
warping (CIDTW) method. We define a new cost function,
called confidence index cost function (CICF), to measure the
similarity between merged speech training data and testing
data, and use the general DTW process to find similarities
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between them. Unlike most of the current DTW variations,
CIDTW only change the cost function in DTW process and
does not have any constraints. On the other hand, its simplic-
ity guarantees flexibility, efficiency, and ease of implementa-
tion. Therefore, CIDTW is very suitable for real-time appli-
cations with limited storage space and small vocabulary.

Three datasets, Chinese names, Chinese and English
names, and Chinese and English names along with Chinese
address terms, have been tested by using DTW and CIDTW.
The results show that CIDTW achieves better accuracy and
overall six times faster speeds compared with DTW.

2. DYNAMIC TIME WARPING ALGORITHM

Consider two input speech signals, L with length m and S
with length n, vary in time. The distance of point i in L and
point j in S is given by formula 1 :

DTW [i, j] = Cost[i, j] +min


DTW [i− 1, j]

DTW [i, j − 1]

DTW [i− 1, j − 1]

(1)

whereCost[i, j] is the Euclidean distance between point i and
point j.

The DTW [m,n] represents the similarity of L and S.
The smaller this value is, the closer the two speech signals
are.

3. PROPOSED CONFIDENCE INDEX DYNAMIC
TIME WARPING METHOD

Our CIDTW method can process spectrograms or Mel Fre-
quency Cepstral Coefficients (MFCC) acoustic features of au-
dio files. In this paper, we use MFCC as input to the CIDTW
method. In the remainder of this paper, we will specify the in-
put speech file format as MFCC. To use CIDTW method for
speech recognition, we record each word for only one time as
training data. This method consists of three steps:

1. Merge adjacent and similar time frames of training and
testing MFCC.

2. Calculate the CICF between merged training and test-
ing MFCC.

3. Apply the CICF to general DTW process.
The following subsections give a detailed description of

each step.

3.1. Time frames merging of MFCC

The first step of CIDTW method is to merge the adjacent sim-
ilar time frames into one new MFCC. The rationale behind
the time frames merging is that some adjacent time frames,
particularly those from the same phoneme, are very similar
[2]. Thus, the length of any MFCC could be decreased by

merging adjacent and similar time frames. Such merging can
significantly shorten the alignment time of two MFCCs.

In our method, we merge frames by replacing them with
their mean vector. As shown in algorithm 1, the adjacent
time frames chosen to be merged together depend on their Eu-
clidean distances, d(Fi, Fi+1). In this paper, i represents the
ith time frame of a certain MFCC. Assuming that an MFCC
has n time frames, the total number of Euclidean distances of
adjacent time frames is n− 1.

Algorithm 1 Time Frames Merging

Require: Time frames F1, F2, . . . , Fn; Distance function
d(i, j); Merge ratio β;

1: Compute distance value between each adjacent frames
d(Fi, Fi+1), 1 ≤ i ≤ n− 1

2: Set merge threshold q as d(n− 1) ∗ βe
3: Find the qth smallest distance value, d(q)
4: Merge consecutive time frames between i to i + k that

satisfy d(Fj , Fj+1) ≤ d(q),j ∈ [i, k];
d(Fi−1, Fi) > d(q);
d(Fk, Fk+1) > d(q)

5: return the merged time frames of an MFCC

3.2. Confidence index cost function of merged training
and testing MFCC

We call the training MFCC after merging time frames as mod-
el template, the merged time frame in training or testing M-
FCC as node, the average distance between all aligned pairs
of nodes in all model templates as D.all, and the average dis-
tance between node i of one model template and its ‘closest’
aligned nodes in all model templates as D.i. We do DTW
alignment between all model templates and get these statis-
tics – D.all and D.i.

Consider that if a node aligns with certain nodes more
closely, the closest scores will affect it much more than us-
ing the average of all alignments, thus a much lower weight
should be assigned to it. By using such a partially average
distance between all the ‘closest’ nodes, D.i, the alignmen-
t system becomes more discriminative. Suppose that there
are m model templates, and node i in model template j has
t aligned nodes, where α% aligned nodes are the ‘closest’ n-
odes to node i. Then the D.i of node i is defined by formula
2:

D.i = (

P∑
k=1

AscDist[i, ik])/P (2)

where
P = t ∗ α%

AscDist is the ascending order Euclidean distance list of node
i and its ‘closest’ aligned node ik.
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Suppose that a node is represented by a n-vector and a
model template has N nodes. The definition of confidence
index cost function (CICF) between node i in a model tem-
plate and node j in a testing MFCC is represented by formula
3:

CICF [i, j] =
c.i∑N
l=1 c.l

∗

√√√√ n∑
k=1

(ik − jk)2 (3)

where

c.i =

{
1.0; if D.i ≥ D.all

D.i/D.all; else

Here, c.i represents the confidence index (CI) of node i
in model templates. If one node’s average distance from it-
s aligned nodes is shorter than the global average, that node
is very similar to nodes in other model templates. Then it is
given lower confidence as model element. Therefore, its CI
is much smaller than 1. On the other hand, if a node’s aver-
age distance from its aligned nodes is longer than the global
average, that node is quite different from nodes in other tem-
plates. Then it is given higher confidence as model element.
Hence its CI is approaching 1. By applying the CI factor of
node in model templates to cost function, CICF could capture
the most important acoustic features of a speech signal.

3.3. CICF applied to DTW process

For testing the similarity between node i in model template
and node j in merged testing MFCC, we replace the cost func-
tion in general DTW with CICF, that is:

CIDTW [i, j] = CICF [i, j]+min


CIDTW [i− 1, j]

CIDTW [i, j − 1]

CIDTW [i− 1, j − 1]
(4)

Overall, the merging of training and testing MFCC time
frames largely increases the training-testing alignment speed,
and the CICF guarantees accurate speech recognition.

4. RESULTS

4.1. Data Preparation

We use the Audacity software to manually record a total of
45 different names over 1.9 hours in a quiet environmen-
t. The recording settings are 8k Hz, mono channel, 16 bits
PCM. Each name is repeated 10 times. At first, 10 Chinese
names are recorded. In order to test whether our method
is compatible with multiple languages, we introduce some
English names in the next 20 names. Since our goal is to

enhance name recognition accuracy, especially for Chinese
words, we introduce 15 different Chinese terms to address
’father’, ’mother’, ’son’, ’daughter’, ’grandparents’, etc.1 We
use these 45 names to perform three experiments. The first
experiment is to test the first 10 Chinese names (dataset1),
the second one is to test dataset2 consisting of the first 10
Chinese names and the next 20 Chinese and English names,
the last one is to test dataset3 including dataset2 and Chinese
address terms.

Referring to Chapter 3 of HTK manual [14], the HCopy
function in HTK is used to convert the audio files of .wav
format into .mfc files. In HTK, the frame period is 25msec,
the fast Fourier transform (FFT) uses a Hamming window,
the signal has first order pre-emphasis applied to it by using a
coefficient of 0.97, the filterbank has 26 channels, and the out-
put is 13 MFCC coefficients. Since the input of our CIDTW
method is text format files, the HList function in HTK is used
to convert these binary .mfc files into text format.

4.2. CIDTW VS. DTW

We use traditional DTW and our CIDTW to test the datasets
1, 2, and 3. Cross validation approach is applied to compare
the DTW method with CIDTW method. Since each name is
recorded ten times, one audio file of a certain name is random-
ly picked out as speech training data, the other nine files are
testing data. Therefore, ten cross validation experiments have
been performed on each dataset. Every cross validation ex-
periment has unique speech training data, which is complete-
ly different than the training data in other nine experiments.
The number of speech training data vs. testing data in each
dataset is: 10 vs. 90, 30 vs. 270, and 45 vs. 405 respectively.

We set the merge ratio in section 3.1 as the golden ratio
(1:1.618) since this is preferred in previous works of salient
data selection [15, 16]. According to section 3.2, the CIDTW
could choose the percentage (α%) of the number of aligned
nodes as closest ones for a node in model templates. We first
analyze the impact of different percentage settings on the av-
erage accuracy of ten cross validation groups in each dataset.
As shown in Figure 1, for all of the datasets, the CIDTW
method achieves the best recognition result when choosing
a 10% or 20% closest aligned node number for each node.
Due to page limitation, we will only show the CIDTW results
of choosing 20% closest aligned node number. For 10% and
15%, our CIDTW also outperforms DTW.

The results of DTW and CIDTW in cross validation ex-
periments are listed in Table 1. The accuracy of the highlight-
ed groups of CIDTW and DTW reaches 100%. The number
of ’100% accuracy’ groups in CIDTW is more than DTW.

As shown in Table 2, the average accuracy of CIDTW is
better than DTW, and the average speed of CIDTW is sig-

1The name list and .wav format source audio files could be found at
https : //www.dropbox.com/sh/8b3hhf0x0ao9bh6/1HuqknwrM
/NameList%26SourceAudioF iles.
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Fig. 1: Accuracy of choosing different number of aligned
nodes. Here, the accuracy is the average of the whole ten
cross validation groups. The diamond-line represents dataset
1, circle-line represents dataset2, and star-line represents
dataset3.

Table 1: Accuracy (%) of DTW and CIDTW for three
datasets. ’D’ is for dataset, and ’G’ is for cross validation
group.

\ G1 G2 G3 G4 G5

D1 DTW 98.89 93.33 94.44 91.11 96.67
CIDTW 94.44 100 95.56 98.89 96.67

D2 DTW 99.63 97.78 98.15 97.04 98.89
CIDTW 98.52 100 97.41 99.63 98.89

D3 DTW 98.52 98.52 98.52 97.53 98.27
CIDTW 98.27 100 97.53 99.01 99.26
\ G6 G7 G8 G9 G10

D1 DTW 96.67 96.67 91.11 95.56 100
CIDTW 100 100 98.89 97.78 100

D2 DTW 98.89 98.89 97.04 98.52 100
CIDTW 100 100 100 98.89 100

D3 DTW 99.26 99.01 97.53 99.01 100
CIDTW 99.51 99.51 99.51 99.01 99.51

nificantly faster than the DTW, that is, CIDTW is 6.15 times
faster than DTW for Dataset1, 6.11 times faster for Dataset2,
and 5.74 times faster for Dataset3 .

Table 2: Overall Recognition Accuracy and CPU Time.

Dataset Algorithm Accuracy (%) CPU Time (s)

1 DTW 95.44 378.18
CIDTW 98.22 61.51

2 DTW 98.48 3117.92
CIDTW 99.33 509.90

3 DTW 98.62 5681.62
CIDTW 99.11 989.43

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a novel CIDTW approach to
provide efficient lightweight SD-SR service for real-time ap-
plications with small vocabulary and limited storage space,
such as offline voice dialing on mobile devices, menu-driven
recognition, and voice control on vehicles and robotics. Un-
like most of the current DTW variations, CIDTW follows
the general DTW process while only changing original cost
function into CICF, hence no constraints need to be specified.
By testing on three representative datasets, CIDTW demon-
strates better accuracy and faster speed compared with DTW.
Its simplicity and light computational complexity makes it
very suitable for those small-footprint and real-time applica-
tions mentioned above.

We hope to develop simpler and more efficient methods;
we are in the process of improving our CIDTW algorithm and
make it available on mobile devices, i.e. cell phones. Specif-
ically, our upcoming work is to recognize contact names in
continuous speech.
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