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ABSTRACT

We propose yet another Gaussian mixture model (YGMM)
for robust speech recognition in noisy environments. The
main difference between the proposed method and previ-
ously proposed GMM-based methods is that we estimate
the noise features instead of the clean-speech features. In
the implemented system, a condition classifier, incidentally
based on GMM, is used to decide the noise type and level,
and the corresponding GMM is employed to compensate for
the noise-corrupted features. The proposed method and the
implemented system are evaluated with the well-documented
Aurora 2.0 noisy digit corpus. The results are promising.
Specifically, it achieves a relative improvement in word error
rate of 52.4% over the standard baseline, and 24.9% over
a better baseline based on a traditional GMM-based feature
compensation method.

Index Terms— Gaussian mixture model, Aurora 2.0,
noise-robust speech recognition

1. INTRODUCTION

The immense popularity of Google voice search and
iPhone Siri, among other internet-based services in recent
years, makes strong case for the maturity of automatic speech
recognition (ASR) technology. However, the issue of noise-
robust speech recognition remains challenging for various
applications. That is, the mismatch between the train data
and the test data often leads to severe performance degrada-
tion, especially in noisy test environments. This is a critical
problem to solve as noises are abundant in everyday lives.
Traditional methods have been proposed to achieve noise
robustness. In speech enhancement, common approaches in-
clude spectral subtraction [1] and Wiener filtering [2]. In
robust feature extraction, common approaches are cepstral
mean subtraction [3], cepstral variance normalization [4], and
histogram equalization [5]. More recently, exemplar-based
methods, such as sparse representation, audio implanting, and
compressive sensing, have been studied [6, 7, 8] with good
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performance. Features based on Teager-Kaiser energy esti-
mator have also been investigated [9].

In this paper, we propose a noise-robust feature compen-
sation method based on Gaussian mixture models (GMMs).
Gaussian mixture models have been widely used on spoken
language technology such as speaker recognition [10, 11, 12,
13] and voice conversion [14, 15, 16, 17]. One class of of
GMMs used to model parallel data, also known as stereo data,
have been successful in noise-robust recognition [18, 19, 20].
Recently, an implementation takes into account the depen-
dence between adjacent frames [21], thus enforcing the in-
herent continuity constraints of speech features.

This paper is organized as follows. Traditional and the
proposed methods using Gaussian mixture models for paral-
lel data are introduced in Section 2. The evaluation scheme,
results, and comments are described in Section 3. Concluding
remarks and feature works are summarized in Section 4. Ad-
ditionally, the relation of this work to prior work is provided
in Section 5.

2. GAUSSIAN MIXTURE MODELS

2.1. Notation

Let x (column vector) denote a noisy speech feature vector of
dimension D, y denote the corresponding clean speech fea-
ture vector of dimension D, and

X
- M (1)

be the concatenated feature vector of dimension 2D. A Gaus-
sian mixture model with K mixture components on z is de-
noted by NV (z; pt,, ., Xz k), k= 1,..., K, where

Hx i 2Jxx k 2xy k::|
= |Mxk| 5, = | 2o k@
”’z,k |:IJ’y,k:| Jk [ny,k Zyy,k ( )

It can be shown (e.g. [22] which contains a practical introduc-
tion of Gaussian models) that the marginal and the conditional
probability density functions of a joint Gaussian distribution
are also Gaussians.
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2.2. Traditional GMM-based Feature Compensation

Traditional feature compensation based on GMM trained on
parallel data can be summarized as follows.

1. minimum mean squared error (MMSE)

K

Iuwse = Ely[x] =Y p(k[x)(Agx +by),  (3)
k=1

where E is the expectation value operator and

A =%, :3 ]

xx,k>’
., @)
bk = ll'y,k - ny:kzxx,ky‘x,k'

2. stereo piecewise linear compensation for environment
(SPLICE)

K

YSPLICE = Zp(k|x)(x +ry), Q)
k=1

where rj is the averaged bias of mixture £ over the
training parallel data {x,,,y, })_; given by

N
p(k|xn)(xn - yn)
r = n=1 < . (6)
Z:lp(kb(")

2.3. Proposed Method

In the aforementioned MMSE compensation, given in (3),
the compensated feature is essentially a weighted sum of the
mean vectors of the GMM for clean speech features. Each
feature vector is compensated independently, so the continu-
ity and dependence between adjacent frames are not explicitly
incorporated.

In this paper, we introduce yet another Gaussian mixture
model (YGMM) for feature compensation. The difference
between YGMM and traditional GMM-based methods can be
read from the following equation

yN»MMSE(X) =X - ﬁ(X)

= X —

M=

p(k[x)B,
1 @)

k

=X —

] >

p(k[x) (Hx,k - Hy,k) .

=
Il

1

The interpretation of YGMM is as follows. Instead of a
weighted sum of the means for clean feature GMM, the esti-
mation of ¥ is based on subtracting an estimated bias, denoted
by 3, from the noisy speech feature x. It is literally “noise-
subtraction”, and the continuity between adjacent frames is
maintained in x.

3. EVALUATION

3.1. Aurora 2.0 Database

The proposed YGMM method for feature compensation is
evaluated on the Aurora 2.0 database [23]. Eight types of
additive noises are artificially added to clean speech data with
SNR levels ranging from 20 to -5 dB. The data may be further
convolved with two types of convolution noises. There are 2
training sets called multi-train and clean-train. These sets are
completely parallel and each set contains 8,440 utterances.
There are 3 test sets. Test data in Set A are matched to the
multi-condition train data, test data in Set B are not matched
to the multi-condition train data, and test data in Set C are
further mismatched due to convolution. A brief summary of
database is provided in Table 1.

3.2. GMM for Classification and Compensation

The block diagram of the proposed system is illustrated in
Fig. 1. The condition of a test utterance is decided by a con-
dition classifier. Subsequently, the feature vectors are com-
pensated accordingly if the utterance is noisy.

The basic speech feature vector consists of the 12 mel-
frequency cepstral coefficients (MFCC) cy, ..., c12 and the
log energy. For feature compensation, we concatenate each
parallel (noisy, clean) feature vectors (x,y) in the training
data into a 26-dimensional vector z. There are 4 noise types
and 4 noise levels in the training data, i.e.,

{subway, babble, car, exhibition hall} x {20, 15, 10, 5} dB,

so 16 GMMs of 256 mixtures each are trained for feature
compensation. For a test utterance, the GMM used for fea-
ture compensation is determined by a condition classifier. The
GMMs in the condition classifier is trained using the multi-
condition training data. For classification, only the first 10
frames of an utterance is used for training, and the feature
vectors are only 13-dimensional. There are 17 GMMs and
each GMM contains 4 mixtures. A brief summarization is
provided in Table 2.

The parameters in GMMs are initialized by a K-means
clustering algorithm, which itself is initialized by randomly-
chosen K data points. The GMM parameters are then re-
estimated via an EM-algorithm with stopping criteria on log-
likelihood difference and number of epochs.

3.3. Recognizer

A hidden Markov model-based (HMM) recognizer is used in
the backend. Specifically, 16-state whole-word models are
used for digits, along with a 3-state silence model, and a 1-
state short-pause model. The state of the short-pause model
is tied to the middle state of the silence model. The state-
emitting probability density is a 3-component Gaussian mix-
ture for a word state, and a 6-component Gaussian mixture for
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Fig. 1. Block Diagram of the Proposed System

Table 1. Aurora 2.0 Database Summary

Table 2. Summary of Used Gaussian Mixture Models

content strings with 1-7 English digits classification | compensation
background subway, babble, car, exhibition hall feature dimension 13 26

noise restaurant, street, airport, train mixtures per GMM | 4 256

channel noise | simulated telephone channels number of GMMs 17 16

noise level 20dB, 15dB, 10dB, 5dB, 0dB, -5dB

noise type subway, babble, car, exhibition hall

train set multi-train, clean-train

noise level 20dB, 15dB, 10dB, 5dB

test set Set A, Set B, Set C

a silence/short-pause state. During HMM training and recog-
nition, the dynamic features of velocity and acceleration are
also derived, resulting in a 39-dimension vector per frame.
The clean-train data set, consisting of 8,440 purely clean ut-
terances, is used to train the recognizer.

3.4. Results and Discussion

The word accuracy rates of the evaluation results are tab-
ulated in Table 3. Overall, YGMM achieves a better per-
formance than baseline and MMSE in noisy conditions (0—
20 dB) and extremely noisy conditions (-5 dB) without lower-
ing the performance in clean condition.

The relative improvements in averaged word error rate
over 0-20dB signal-to-noise ratio (SNR) test data can be
obtained from Table 3 and they are summarized in Table 4.
In this commonly-encountered context, YGMM achieves
a relative improvement of 52.4% over the standard base-
line (39.9% — 19.0%), and 24.9% (25.3% — 19.0%) over
traditional MMSE. The results show that directly subtract
estimated noise effect from the noisy feature leads to better
performance.

As the training data for GMM compensation and classifi-
cation are partially matched to Set A, the degree of data mis-
match gets worse from Set A to Set B, and even worse for Set
C. As aresult, the performance of the proposed system is best
in Set A (88.3% for 0-20dB test data), and is worst in Set C
(74.2%).

Table 4. Relative Improvement in Word Error Rate

Avg | over baseline | over MMSE
baseline 39.9 =
MMSE 253 36.8 =
N-MMSE | 19.0 524 24.9

4. CONCLUSION AND FEATURE WORK

In this research, we propose a GMM-based noise-robust fea-
ture compensation method abbreviated YGMM. The basic
idea of YGMM is to directly estimate noise effect on fea-
ture and subtract this effect from noisy features. On Aurora
2.0 database which is completely parallel, YGMM achieves
a better performance than traditional compensation method
based on MMSE.

The number of GMMs is a design parameter, as well
as the number of mixtures in each GMM. With more data
and more diverse test environments, these number can be
increased to achieve better performance. Thus, it would be
interesting to extend this work to other database, such as Au-
rora 3.0, to study the scalability. Indeed, even cross-lingual
schemes for compensation can be reasonably attempted.

5. RELATION TO PRIOR WORK

The notation and formulation for Gaussian models fol-
lows [22]. Using GMMs to model parallel data for fea-
ture compensation have been studied in [18, 19] (MMSE)
and in [20] (SPLICE). A compensation scheme taking into
account the constraints between adjacent frames [21] is im-
plemented.
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Table 3. Word Accuracy Rates on Aurora 2.0 Database

Baseline
A B C Overall
Sub. | Bab. | Car | Exhi. | Avg | Rest. | Street | Air. | Sta. | Avg | SubM | StrM | Avg Avg
Clean | 989 | 99.0 | 99.0 | 99.2 | 99.0 | 98.9 | 99.0 | 99.0 | 99.2 | 99.0 | 99.1 99.0 | 99.1 99.0
20dB | 97.1 | 90.2 | 974 | 96.4 | 953 | 90.0 | 957 | 90.6 | 94.7 | 92.8 | 93.5 95.1 | 943 94.1
15dB | 935 | 73.8 | 90.0 | 72.0 | 873 | 76.2 | 88.5 | 77.0 | 83.7 | 81.3 | 86.8 88.9 | 87.8 85.0
10dB | 78.7 | 494 | 67.0 | 757 | 67.7 | 548 | 67.1 | 539 | 603 | 59.0 | 73.9 744 | 74.2 65.5
5dB | 522 | 26.8 | 34.1 | 448 | 39.5| 31.0 | 385 | 303|279 | 319 | 513 49.2 | 50.2 38.6
0dB | 260 | 93 | 145 | 18.1 | 17.0 | 11.0 | 17.8 | 144 | 11.6 | 13.7 | 254 229 | 242 17.1
-5dB | 11.2 ]| 1.6 | 94 9.6 7.9 3.5 10.5 82 | 85 | 7.7 11.8 11.2 | 11.5 8.5
Avg | 69.5 | 499 | 60.6 | 654 | 61.3 \ 52.6 \ 61.5 \ 53.3 \ 55.6 | 55.8 \ 66.2 \ 66.1 \ 66.1 60.1
GMM MMSE
A B C Overall
Sub. | Bab. | Car | Exhi. | Avg | Rest. | Street | Air. | Sta. | Avg | SubM | StrM | Avg Avg
Clean | 989 | 99.0 | 99.0 | 99.2 | 99.0 | 98.9 | 99.0 | 98.9 | 99.3 | 99.0 | 99.1 98.9 | 99.0 99.0
20dB | 95.6 | 955 | 963 | 96.5 [ 96.0 | 954 | 939 | 952 | 96.0 | 95.1 92.0 909 | 914 94.7
15dB | 923 | 93.8 | 939 | 934 | 933 | 92.6 | 90.0 | 922 | 93.5 | 92.1 85.4 82.7 | 84.0 91.0
10dB | 88.7 | 86.1 | 89.1 | 87.8 | 87.9 | 843 | 81.7 | 843 | 83.5 | 83.4 | 723 703 | 71.3 82.8
5dB | 80.7 | 67.6 | 75.1 | 79.5 | 75.7 | 63.8 | 59.8 | 649 | 66.5 | 63.8 | 46.4 50.1 | 48.3 65.4
0dB | 59.7 | 39.1 | 48.1 | 57.8 | 51.2 | 36.7 | 31.2 | 36.3 | 37.0 | 353 | 21.5 26.0 | 23.7 394
-5dB | 28.1 | 129 | 21.1 | 30.5 | 23.1 | 8.7 102 | 7.0 | 12.5 | 9.6 11.1 13.6 | 12.3 15.6
Avg | 834 | 76.4 | 80.5 | 83.0 | 80.8 \ 74.6 \ 71.3 \ 74.6 \ 75.3 | 73.9 \ 63.5 \ 64.0 \ 63.7 74.7
YGMM
A B C Overall
Sub. | Bab. | Car | Exhi. | Avg | Rest. | Street | Air. | Sta. | Avg | SubM | SttM | Avg Avg
Clean | 989 | 99.0 | 99.0 | 99.2 | 99.0 | 98.9 | 99.0 | 99.0 | 99.2 | 99.0 | 99.1 99.0 | 99.1 99.0
20dB | 97.7 | 98.1 | 984 | 98.1 | 98.1 | 97.6 | 973 | 974 | 98.2 | 97.6 | 97.5 96.6 | 97.0 97.7
15dB | 962 | 97.2 | 97.6 | 964 | 96.8 | 96.2 | 953 | 954 | 96.6 | 959 | 94.7 93.2 | 939 95.9
10dB | 935 | 934 | 945 | 932 | 93.6 | 90.3 | 87.8 | 89.3 | 90.6 | 89.5 | 85.9 83.1 | 84.5 90.2
5dB | 87.0 | 78.0 | 83.6 | 853 | 835 | 72.8 | 68.1 | 722 | 742 | 71.8 | 63.3 63.5 | 634 74.8
0dB | 68.5 | 44.6 | 58.5 | 68.3 | 60.0 | 42.7 | 39.2 | 39.6 | 41.5 | 40.2 | 31.0 33.2 | 32.1 46.7
-5dB | 33.8 | 12.2 | 234 | 36.6 | 265 | 9.8 133 | 46 | 102 | 9.5 13.1 16.1 | 14.6 17.3
Avg [ 886 ]823[865] 883 [864] 799 | 775 [ 788|802 [79.1] 745 | 739 [742] 810
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