
ESTIMATION OF LUMPED VOCAL FOLD MECHANICAL PROPERTIES FROM
NON-INVASIVE MICROPHONE RECORDINGS

Steven M. Lulich

Department of Speech and Hearing Sciences, Indiana University, Bloomington, USA
slulich@indiana.edu

ABSTRACT

In this paper it is argued that vertical motions of the vocal
folds allow sound to be transmitted between the subglottal air-
ways and the vocal tract during the closed phase of vocal fold
vibration. From this insight, a pair of equations relating the
lumped inertance and compliance of the vocal folds to the fre-
quencies of speech resonances (F0 and formants) is derived.
These equations include terms for the input impedances of
the vocal tract and the subglottal airways measured from the
glottis. If these input impedances can be estimated with suffi-
cient accuracy, then the lumped inertance and compliance of
the vocal folds can be estimated to arbitrary accuracy depend-
ing on the accuracy of formant and F0 measurements, and
depending on the validity of the assumptions that losses are
negligible and that the vocal folds are mechanically isotropic
in the coronal plane.

Index Terms— vocal folds, subglottal, vocal tract, mod-
els of speech and voice production

1. INTRODUCTION

Vocal fold vibration depends critically on the mechanical
properties of the vocal fold tissues, coupled with the time-
varying aerodynamic pressure produced by flow through the
larynx during phonation. This time-varying pressure is it-
self subject to influence from the acoustic load of the vocal
tract and of the subglottal airways. Titze [1] showed from a
time-domain analysis that a vocal fold modeled as a mass-
spring-dashpot mechanical system (with mass M , spring
constant K, and viscosity B) has an effective mass, M∗,
spring constant, K∗, and viscosity, B∗, which are affected by
the properties of the acoustic load:

M∗ = M + 2lvfI2b(ξ0 + ξ̄) (1)
B∗ = B − 2lvfI2ῡ + 2lvfR2b(ξ0 + ξ̄) (2)
K∗ = K − 2lvfR2ῡ (3)

In these equations, lvf is the length of the vocal folds
(lvf ≈ 1.6cm for adult males), and ξ0 and ξ̄ are the initial
(pre-phonatory) and mean phonatory glottal half-width, re-
spectively (ξ is the instantaneous glottal half-width). Other

parameters are described in [1]. I2 and R2 are the lumped
inertance and resistance, respectively, of the vocal tract load
impedance as defined in [1]. The acoustic load of the subglot-
tal airways was not included in this derivation, although sub-
sequent work on non-linear source-filter interaction has done
so [2].

Motion of the vocal folds in the medial-lateral (‘horizon-
tal’) direction has been of primary concern to speech and
voice researchers, since it is this motion which modulates the
airflow through the glottis and enables the voice source to be
produced efficiently. In contrast, the focus of this paper is vo-
cal fold motion in the inferior-superior (‘vertical’) direction.
It is argued that such vertical motions allow sound to be trans-
mitted between the subglottal airways and the vocal tract even
during the closed phase of vocal fold vibration, as proposed
by [3]. Under such a condition, it is possible to derive Equa-
tion 1 in a very straight-forward way in the frequency domain
by assuming that the vocal folds are mechanically isotropic
in the coronal plane and that viscous and acoustic losses are
negligible [3]. Moreover, this leads immediately to a pair of
analytic equations relating the lumped inertance and compli-
ance of the vocal fold tissue to the frequencies of speech reso-
nances (F0 and formants). These equations include terms for
the input impedances of the vocal tract and the subglottal air-
ways (measured from the glottis). If these input impedances
can be estimated with sufficient accuracy, then the lumped
inertance and compliance of the vocal fold tissues can be es-
timated to arbitrary accuracy depending on the accuracy of
formant and F0 measurements, and depending on the valid-
ity of the two assumptions given above.

Section 2 of this paper presents the argument that sound
transmission between the subglottal airways and the vocal
tract can be mediated by the vertical motions of the vocal fold
tissues during the closed phase, in addition to the motion of
the glottal air column during the open phase [3]. Section 3
presents the theoretical ramifications of this insight, includ-
ing a derivation of Equation 1 and the derivation of equations
determining the inertance and compliance of the vocal folds.
The use of these new equations is illustrated for a special case
in Section 4. Section 5 provides a summary and conclusion,
and the relation of this paper to prior work is outlined in Sec-
tion 6.
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2. SOUND TRANSMISSION THROUGH THE VOCAL
FOLD TISSUES

The coupling between subglottal and supraglottal airways is
generally assumed to occur only during the open phase of the
vocal fold vibration cycle [4, 5, 6]. During the open phase (for
small amplitude vibrations), the glottal air column between
the membranous vocal folds is modeled as a lumped acoustic
mass and resistance in series [7].

Acoustic coupling between the subglottal and supraglottal
airways need not be mediated solely by the open phase glottal
air column, but may also be mediated by either the poste-
rior glottal opening or the vocal fold tissue itself, so that cou-
pling may be possible throughout the vocal fold vibration cy-
cle. During the closed phase, coupling may be dominated by
the vocal fold tissue or the posterior glottal opening (hence-
forth, the cartilaginous glottis), while during the open phase
coupling is dominated by the glottal air column [3]. Vocal
fold vibration therefore modulates the coupling mechanism
and the strength of coupling between subglottal and supra-
glottal airways within a cycle. The third mechanism - that is,
the coupling via the vocal fold tissue itself - is the focus of the
present study.

A new model of the laryngeal impedance as proposed by
[3] is shown in Figure 1. It is a modification of the model
introduced by [8] (see also [6], p. 197) and used by [9], [10],
and [11] in studies of subglottal-supraglottal coupling. In the
original model, the subglottal impedance, Zsg , and the vocal
tract impedance, Zvt, were connected in series by the glottal
impedance, Zg , with a dipole source represented by two ideal
volume velocity sources, Us, straddling the glottal impedance
and with opposite sign. In the modified model, the glottal
impedance, Zg , is replaced by a ‘laryngeal impedance’, Zlar,
consisting of three parallel impedances representing the mem-
branous glottis, Zmg , the cartilaginous glottis, Zcg , and the
vocal fold tissue, Zvf .

The impedances of the membranous glottis and the car-
tilaginous glottis are modeled by Eqs. 4 and 5, where lmg

and lcg ≈ 2Lmg/3 [12] are the anteroposterior lengths of
the membranous and cartilaginous glottis, respectively, Umg

and Ucg are the volume velocities through them, and h is the
height of the glottis, which is assumed to be the same for
both the membranous and cartilaginous portions of the glottis.
The cartilaginous glottis is assumed to be (isosceles) triangu-
lar with a base of 2bcg , so that the area of the cartilaginous
glottis is Acg = lcgbcg . ξ is the glottal half-width, so that
Amg = 2lmgξ is the area of the membranous glottis (assum-
ing that the membranous glottis is rectangular). ρ is the den-
sity of air and µ = η/ρ is the kinematic viscosity, and η is
the dynamic viscosity. Kg is a constant which depends on the
geometry of the glottal entry and exit.

Zmg =

[
12µh

lmg(2ξ)3
+Kg

ρUmg

(2lmgξ)2

]
+ jω

ρh

2lmgξ
(4)

Zcg =

[
12µh

lcgb3cg
+Kg

ρUcg

(lcgbcg)2

]
+ jω

ρh

lcgbcg
(5)

The vocal folds are assumed to form a circular plate when
the glottis is completely closed,with radius equal to the ra-
dius of the trachea, r = rtrachea. A typical value of the
tracheal radius is rtrachea ≈ 0.8cm [13], so that the diam-
eter, 2r ≈ 1.6cm, of the vocal fold plate is roughly equal
to the length of the vocal folds. The (axial) cross-sectional
area of the vocal folds when the glottis is completely closed is
Avf = πr2. The cross-sectional area per vocal fold isAvf/2,
and the impedance of the vocal folds is given by Eq. 6.

Zvf =
1

2

[
jω

m

(Avf/2)2
+

1

jω

k

(Avf/2)2
+R

]
(6)

where m is the mass of one vocal fold, k is the spring con-
stant, R is the viscous resistance, and the factor of 1/2 indi-
cates that each vocal fold impedance is assumed to be iden-
tical and summed in parallel. Note that Equation 6 gives the
impedance of the vocal fold tissue in the inferior-superior di-
rection, or the direction of sound transmission between the
subglottal airways and the vocal tract.

Sound transmission through the closed vocal fold tissue is
generally not recognized in the speech and voice production
literature, so it is worth emphasizing that such a phenomenon
is essentially identical to sound transmission through the
closed velum [14] or through the vocal tract wall tissues such
as the cheeks and neck [15]. Moreover, multi-mass models
of vocal fold vibration as well as excised hemilarynx exper-
iments show vertical motions of the vocal folds which are
similar in magnitude to the horizontal motions [12, 16, 17].

3. THEORETICAL DERIVATIONS
In this section, it is assumed that viscous and acoustic losses
are negligible. This means that the subglottal and vocal tract
complex input impedances are replaced by purely imaginary
reactances, and that R = 0 in Equation 6. Under this as-
sumption, the natural frequencies of the subglottal-laryngeal-
supraglottal system during complete glottal closure can be
found by summing the subglottal reactance, Xsg , with the
series laryngeal and vocal tract reactances, Xlar + Xvt =
Xvf +Xvt, and setting the sum to zero:

[Xsg +Xvf +Xvt]ωn
= 0 (7)

where [·]ωn
indicates that the reactances are evaluated at the

natural frequency, ωn.
3.1. Derivation of the effective vocal fold mass
In the case that F0 is low compared to the first formant, F1,
and the first subglottal resonance, Sg1, and if F0 is consid-
ered to be a natural frequency of the system, ω0/(2π), then
lumped inertances can be substituted for Xsg and Xvt and
Equation 6 can be substituted in Equation 7 to obtain the fol-
lowing:

jω0I1 + jω0I2 +
1

2

[
jω0

m

(Avf/2)2
+

1

jω0

k

(Avf/2)2

]
= 0

(8)
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Fig. 1. Model of the subglottal and supraglottal airways coupled in series via the laryngeal impedance.

where I1 is the inertive load of the subglottal airways and I2 is
the inertive load of the vocal tract. Rearranging terms results
in Equation 9.

1

2

[
jωn

m+ 2(Avf/2)2(I1 + I2)

(Avf/2)2
+

1

jωn

k

(Avf/2)2

]
= 0

(9)
It is now clear that the system operates with an effective

mass, m∗, for each vocal fold which depends on the vocal
tract and subglottal acoustic loading as well as the vocal fold
mass,

m∗ = m+ 2(Avf/2)2(I1 + I2) (10)

which is equivalent to Equation 1. As in [1], the effective
stiffness, k, does not depend on the inertance of the acoustic
load (see Equation 3).

3.2. Equations for vocal fold inertance and compliance
Equation 7 can be rewritten in the following useful form:[

Kn +
1

2

(
jωL+

1

jωC

)]
ωn

= 0 (11)

where Kn = [Xsg + Xvt]ωn is an imaginary number, L =
m/(Avf/2)2 is the lumped vocal fold inertance, and C =
(Avf/2)2/k is the lumped vocal fold compliance. Equation
11 is valid for any resonance frequency, ωn, of the complete
subglottal-larynx-vocal tract system in the absence of losses.
If two resonance frequencies are known, Fm = ωm/(2π) and
Fn = ωn/(2π), then two equations of this form can be writ-
ten down. If, in addition, the corresponding values of Km

and Kn at each resonance frequency are known or can be es-
timated, then the result is a system of two equations and only
two unknowns: L and C. This system of equations can be
solved to yield two closed-form equations for determining L
and C:

L =
j(KnFn −KmFm)

π(F 2
n − F 2

m)
(12)

C =
F 2
n − F 2

m

j4πFmFn(KnFm −KmFn)
(13)

Resonances which may be used for Fm and Fn could in-
clude F0 and any formants (or any subglottal resonances).

4. ESTIMATION OF L AND C IN A SPECIAL CASE

The special case is considered in which Fm = F0 and Fn =
F1, and Km = 0, which indicates no non-linear source-filter
interaction. To estimateKn, a model of the subglottal-larynx-
vocal tract system was implemented. The subglottal airways
were modeled as described in [19, 10] using the Weibel [13]
lung geometry, and the vocal tract was modeled for the vowel
[a] using the area function reported by [18]. The vocal folds
were modeled as having area Avf = 1.44cm2, with mass
m = 0.06g and spring constant k = 33, 000cyne/cm [6].
The viscosity of the vocal folds was assumed to be R ·A2

vf =
80dyne · s/cm, equal to that of the velum [14]. (Further de-
tails of the implementation can be found in [19].) The vowel
transfer function spectrum was computed, and the resulting
F1 was found to be 785Hz. From these subglottal and vocal
tract models, it was found that Xsg = −26j g/s · cm4 and
Xvt = −512j g/s · cm4 at this frequency, so that Kn was
equal to −538j g/s · cm4.

Five adult subjects (3 males, 2 females, aged 25-54) with
normal voice quality participated in a small experiment. Each
subject produced a sustained vowel [a] at various pitches in a
musical major scale, from the lowest note they could produce
to the highest. For each note, the fundamental frequency, F0,
and the first formant, F1, were measured. It was assumed,
for the sake of illustration, that Kn = −538j g/s · cm4 for
each subject. Equations 12 and 13 were used to calculate the
estimated values of L and C for each subject at each pitch in
the major scale. The results are shown in Figure 2.1

The data show that the vocal fold compliance estimates
all follow a single master curve, regardless of gender or age,
with compliance decreasing as F0 increases. The vocal fold
inertance estimates are more variable, although the values for
all subjects cover a similar range.

A further step was taken to estimate the mass, m, and

1Note that speaker F1 produced vowels with F0 up to 951Hz, but in-
stances with F0 > 600Hz produced estimated values of L and C which
were obviously incorrect, including negative values (data not shown). This is
presumably due to the difficulty in measuring F1 accurately at such high
F0. Similarly, the highest F0 values from speaker M1 are not shown
(F0 > 300Hz).
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Fig. 2. Estimated values of vocal fold inertance, L, and com-
pliance, C, as a function of F0 for five speakers.

spring constant, k, of the vocal folds. For the adult males, it
was assumed that the vocal fold length was lvf = 1.8cm, and
the width of the vibratory part of the vocal folds was 0.5cm
[6, p. 9], leading to Avf = 0.9cm2. For females, lvf =
1.3cm and the width was 0.4cm, leading to Avf = 0.52cm2.
The mass and spring constant could then be calculated from
L = m/(Avf/2)2 and C = (Avf/2)2/k. Table 1 reports the
median mass, m, and spring constant, k, for each subject.

Stevens [6] suggests that the effective mass of a single
vocal fold is on the order of m = 0.025g for females and
m = 0.06g for males. For males, these values agree well
with the median values obtained in the present study. For fe-
males, they are somewhat smaller than the median estimated

Table 1. Median mass, m, spring constant, k values, and age
(in years) for the five speakers.

Speaker age m(g) k(dyne/cm)
M1 25 0.0587 48,616
M2 28 0.0577 70,730
M3 54 0.0511 58,572
F1 27 0.0507 52,674
F2 53 0.0471 34,980

values. Similarly, [6] reports the compliance per unit length
to be lvf/k = 2.5 · 10−5cm2/dyne for females and lvf/k =
3·10−5cm2/dyne for males. These correspond to spring con-
stants k = 52, 000dyne/cm for females (lvf = 1.3cm) and
k = 60, 000dyne/cm for males (lvf = 1.8cm). These val-
ues are in good agreement with the estimated values for both
males and females.

5. SUMMARY AND CONCLUSION
In this paper, it has been argued that vertical motions of the
vocal folds allow sound to be transmitted between the sub-
glottal airways and the vocal tract even during the closed
phase of vocal fold vibration. The derivation of Titze’s ef-
fective mass (Equation 1) in the frequency domain further
suggests the accuracy of this insight. A pair of equations re-
lating the lumped vocal fold inertance and compliance to the
frequencies of speech resonances was derived, and their po-
tential for use in estimating vocal fold mechanical properties
using non-invasive microphone recordings was illustrated.

Estimates of the lumped acoustic mass, L, do not show a
systematic trend with increasing frequency, either within or
across speakers, but vary between 0.2 and 0.4g/cm4. This
may indicate that the estimation of L is currently accurate
only to within 0.1g/cm4, or roughly 30%. Since L and C
are related approximately according to the formula F0 =
1/(2π)

√
1/LC, errors of 30% in L must be compensated by

errors of the same magnitude in C for a given F0. Estima-
tion errors should decrease once the factors Kn and Km can
be more precisely determined, and when effects of acoustic
losses are included.

6. RELATION TO PRIOR WORK
The work presented here has focused on the theoretical ram-
ifications of the insight that the vocal fold tissues may trans-
mit sound between the subglottal airways and the vocal tract
[3]. It was shown how the focus on vertical motion makes
it possible to derive analytic equations for estimating vocal
fold lumped mechanical properties using non-invasive micro-
phone recordings of vowels. This is in contrast to current
methods which typically rely on high speed endoscopic imag-
ing of horizontal vocal fold vibration and high-dimensional
multi-mass models of the vocal folds in order to estimate vo-
cal fold mechanical properties [20]. Such methods remain
superior when accurate 3-dimensional models of vocal fold
mechanics are required, but the approach developed in this
paper shows promise for situations in which such methods
are unavailable, such as during ambulatory monitoring of vo-
cal health or fast and non-invasive vocal health screening ap-
plications.
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