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ABSTRACT

Text-independent speaker identification is studied using neutral and
shouted speech in Finnish to analyze the effect of vocal mode mis-
match between training and test utterances. Standard mel-frequency
cepstral coefficient (MFCC) features with Gaussian mixture model
(GMM) recognizer are used for speaker identification. The results
indicate that speaker identification accuracy reduces from perfect
(100 %) to 8.71 % under vocal mode mismatch. Because of this
dramatic degradation in recognition accuracy, we propose to use a
joint density GMM mapping technique for compensating the MFCC
features. This mapping is trained on a disjoint emotional speech cor-
pus to create a completely speaker- and speech mode independent
emotion-neutralizing mapping. As a result of the compensation, the
8.71 % identification accuracy increases to 32.00 % without degrad-
ing the non-mismatched train-test conditions much.

Index Terms— speaker identification, shouted speech

1. INTRODUCTION

Research in both speech and speaker recognition has largely focused
on normalizing out undesirable variations caused by transmission
channel and acoustic environment. Combating for these technical
nuisance factors has lead to many successful normalization tech-
niques in feature [1], model [2] and match score domains [3]. A
much less studied problem, however, is that of intra-person varia-
tions caused by changes in the vocal production process itself. Of
particular interest is variation in speaker’s vocal effort. Vocal ef-
fort has a communicative purpose, such as an attempt to conceal the
speech content (whispering), increasing intelligibility in noisy en-
vironments (loud speech) or indicating emergency or other type of
urgency (shouting). Speech in forensic speaker recognition and ac-
cident investigation is likely to have been produced under stress and
is therefore combined with high vocal effort.

Even though differences between neutral and shouted/loud
speech in traditional acoustic parameters - formants, fundamental
frequency and intensity - are well studied (e.g. [4, 5, 6]), the effect of
vocal effort on automatic speech and speaker recognition [4, 6, 7, 8]
has received much less attention. The question of how shouting
affects between-speaker and within-speaker differences is not only
relevant for forensic speaker recognition, but of fundamental nature
that has implications to other recognition applications as well.

In the NIST 2010 speaker recognition evaluation (SRE) cam-
paign, the effect of vocal effort on speaker recognition was analyzed
[7]. In that study, speakers produced soft and loud utterances in a

The work was supported by Academy of Finland.

controlled set-up. It was reported that mismatched vocal effort be-
tween training and test (training with normal vocal effort and test-
ing with high vocal effort) cause degradation of recognition accu-
racy. The authors of [9] have found that features extracted from
nasal syllables are relatively robust to high vocal effort. They have
reported that, in context of a GMM-JFA recognizer on the NIST
2010 SRE corpus, the nasal constrained cepstral coefficients tend to
bring advantage over using all cepstral coefficients. In [4], whis-
pered speech was found to give the lowest identification rate and it
was reported that 98.8 % identification accuracy obtained in neutral
training-neutral test condition whereas in neutral training-shouted
test case identification accuracy reduced to 56.3 %. An HMM based
text-dependent speaker identification method for shouted speech was
proposed in [8] and it was reported that identification accuracy de-
creases from 96 % to 73 % when shouted speech is used for testing.
In that study, the speech samples used in the experiments were col-
lected in different sessions and speaker models were trained using
neutral speech.

In this study, we consider idealized speaker identification con-
ditions where the typically included effects of channel mismatch,
environmental noise and reverberation are completely excluded. To
this end, we consider closed-set speaker identification using Finnish
utterances recorded in an anechoic chamber. This approach, impor-
tantly, enables studying speaker identifiability solely under varying
vocal modes; if one cannot correctly identify speakers even under
such idealized setting, one should not expect accurate recognition
under additional nuisance factors due to channel or environment.

In order to study speaker identification in mismatch conditions
between neutral and shouted speech, a method based on joint density
GMM mapping is proposed to compensate the effect of shouting. To
this end, we adopt methods from voice conversion [10] – typically
used for speaker identity conversion – to train a speaker-independent
joint density Gaussian mixture model mapping on the MFCC fea-
ture space. This mapping, intended to remove any expressive factors
from a given stream of MFCCs, is independently trained on a dis-
joint emotional German speech corpus including parallel recordings
of neutral and emotionally colored speech samples.

2. NEUTRAL VS. SHOUTED SPEECH

The authors of [4] categorize speech as having five different modes:
whispered, soft, neutral, loud and shouted. Vocal intensity is lowest
in whispered speech which is acoustically generated by an aperiodic
weak excitation waveform in the absence of the vocal fold vibration.
Due to the lack of vocal fold vibration, whispered speech is the low-
est vocal mode. Shouted speech, in turn, is the highest vocal mode.
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Fig. 1. Spectrograms and first three formants of neutral and shouted
versions of the same utterance spoken by a female speaker.

It calls for increased lung effort generating rapid period fluctuation
of the vocal folds and a prominent voice excitation, which result in
maximal vocal intensity. Current speaker recognition studies mostly
focus on neutral, normally spoken speech.

A number of authors have analyzed acoustic differences of neu-
tral and shouted speech. In [5], acoustic differences between nor-
mal and shouted speech were analyzed in forensic settings. In that
study, it was found that the fundamental frequency (F0) and the first
formant frequency (F1) increase in shouting whereas the second and
the third formants (F2 and F3) were less affected by shouting. In [4],
different speech modes were analyzed in terms of the sound inten-
sity level, duration and frame energies. It was found that the average
sound intensity level of shouted speech is higher than that of neu-
tral speech and sentence duration of shouted sentence is longer than
neutral. Number of low energy frames, on the other hand, is smaller
in shouting than in neutral speech. This is in line with [7] where sta-
tistically significant differences between the average energy levels
of normal and high vocal effort utterances in NIST SRE 2010 were
reported. In [6], emergency situation detection was studied for an
indoor acoustic-based security system and it was found that both F1

and F2 and their standard deviations increase in shouting. Recogni-
tion of shouted speech was also considered and it was reported that
word recognition accuracy decreases for shouted speech.

Acoustic differences between normal and shouted speech can
easily be seen from spectrograms. Fig. 1 displays the wideband
spectrograms and the first three formants (F1-F3) calculated using
Praat1 for neutral and shouted version of the same utterance. As
seen from the figure, the formants (especially F1) are shifted to
higher frequencies in shouted speech. Differences in neutral and
shouted speech are further described in Fig. 2, which show spectra
of these two vocal modes computed by fast Fourier transform (FFT)
and linear prediction (LP). Clearly, the shouted speech is character-
ized by sharper peaks in the spectral envelope. The spectral dis-
similarities between neutral and shouted speech will affect MFCCs
utilized in the feature extraction of speaker recognition resulting in a
speech mode mismatch between training and test. In the following,
we propose a feature compensation to mitigate for such mismatches.

1http://www.praat.org/
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Fig. 2. Power spectra of a voiced speech frame in neutral (F0 = 297
Hz) and shouted mode (F0 = 375 Hz).

3. SHOUT COMPENSATION

To compensate the effect of different speech modes, voice conver-
sion can be utilized to convert an utterance from one mode to an-
other. Voice conversion refers to methodologies for converting one
speaker’s (source) utterances to given an impression that they are
spoken by another speaker (target) [10]. A voice conversion sys-
tem consists of two main components, signal parameterization and
feature mapping function. Signal parametrization model such as
STRAIGHT [11] is used for analyzing (and synthesizing) utterances,
whereas mapping is used for learning a regression function between
the vocal spaces of the source and the target speakers. As we do
recognition rather than synthesis or conversion, we only consider
the feature mapping part. We directly plug-in our feature mapping
function to our recognizer MFCC front-end as will be detailed be-
low.

A generic feature mapping function is denoted here by fΘ(x) :
R

d → R
d, where Θ denotes the model parameters and d is the

dimensionality of the acoustic vectors. In the training phase, the pa-
rameters Θ are learnt from a training set consisting of frame-aligned
feature vector pairs {(xt,yt)|t = 1, 2, . . . , T}. To ensure that train-
ing utterances are phonetically aligned, they are usually taken to be
parallel so that both the source and the target speakers read the same
sentences. Alignment of the feature vectors is achieved using dy-
namic time warping (DTW). In the conversion phase – which is
completely text-independent – one applies ŷt = fΘ(xt) for each
source vector xt to find predicted target speaker vector yt for that
observation. In this study, we adopt feature mapping techniques
from voice conversion to compensate for shouted speech. To this
end, now X and Y represent non-neutral and neutral vocal spaces of
the same speaker rather than two different speakers. We compensate
non-neutral speech using Gaussian mixture model (GMM) conver-
sion [12]. In particular, we adopt the joint density GMM originally
proposed in [13]. In this model, the joint distribution of the source
(non-neutral) and the target (neutral) features is modeled by GMMs
trained using the stacked feature vectors zt = [x⊤

t ,y
⊤

t ]⊤ of dimen-
sionality 2d. The joint probability density function is given by,

p(zt|Θ
(z)) =

M
∑

m=1

P (z)
m N (zt|µ

(z)
m ,Σ(z)

m ),

where µ
(z)
m =

[

µ
(x)
m

µ
(y)
m

]

and Σ
(z)
m =

[

Σ
(xx)
m Σ

(xy)
m

Σ
(yx)
m Σ

(yy)
m

]

are

the mean vector and covariance matrix of the multivariate Gaus-
sian density N (zt|µ

(z)
m ,Σ

(z)
m ), respectively, and P

(z)
m are the prior

probabilities constrained by P
(z)
m ≥ 0 and

∑

m
P

(z)
m = 1. The

joint model parameters are estimated to maximize likelihood for the
training data set using the conventional expectation-maximization
(EM) algorithm [14]. In our implementation, we use full covari-
ance matrices and 40 EM iterations starting from randomized initial
solution. Even though speaker recognition systems typically use di-

8028



0
100

200

0

10

20
−100

0

100

200

Frame number

Original neutral speech

MFCC index 0
200

400

0

10

20
−200

0

200

Frame number

Original shouted speech

MFCC index

0
100

200

0

10

20
−100

0

100

200

Frame number

Neutral speech after compensation (4 Gaussians)

MFCC index 0
200

400

0

10

20
−100

0

100

200

Frame number

Shouted speech after compensation (4 Gaussians)

MFCC index

Fig. 3. MFCCs of neutral, shouted and their compensated counter-
parts.

agonal covariances, full covariances are common in voice conver-
sion. They capture cross-correlations across the source and the tar-
get spaces, while diagonal covariance (for all the four submatrices
Σ

(xx)
m , Σ(xy)

m , Σ(yx)
m and Σ

(yy)
m ) implies independent conversion of

each cepstral coefficient. In preliminary tests, we implemented both
variants and, despite small amount of training data, full covariance
with less Gaussians outperformed systematically all trialed diagonal
conversions (up to 256 Gaussians). To reduce sensitivity to param-
eter initialization, we repeat training 20 times, each starting from
a different random guess, and pick the GMM which yields largest
likelihood. Given the trained joint density model, the predictor for
future data points is,

ŷ = f(x) =
M
∑

m=1

pm(x)(µ(y)
m +Σ

(yx)
m (Σ(xx)

m )−1(x− µ
(x)
m )),

where pm(x) = PmN (x|µx
m,Σxx

m )/
∑

k
PkN (x|µx

k,Σ
xx
k ) de-

notes the posterior probability of x originating from the mth Gaus-
sian.

Fig. 3 shows the MFCCs of the same utterance spoken with
neutral and shouted speech modes and their compensated versions
using 4 Gaussians, as an example. It can be seen that the variations
between neutral and shouted speech modes of the same utterance are
highly reduced after compensation.

4. EXPERIMENTAL SETUP

The speech corpus used in experiments consists of 11 male and 11
female speakers. Each speaker produced 24 Finnish utterances us-
ing neutral speech mode. The same 24 utterances were also produced
with shouting. The sentences were recorded using a high-quality mi-
crophone in an anechoic chamber so that the device, environmental
and channel effects are completely excluded. The average duration
of utterances is approximately 3 seconds. Half of the sentences are
in imperative and half in indicative mood. For more details about the
database, refer to [15].

In training the joint density GMM feature mapping, we utilize
the Berlin database of emotional speech [16]2. This corpus con-
sists of German speech samples from ten speakers (5 males and 5 fe-
males) recorded also in an anechoic chamber. Each speaker produces
5 short and 5 longer sentences in seven different emotional modes:

2http://pascal.kgw.tu-berlin.de/emodb/

neutral, anger, happiness, fear, boredom, disgust and sadness. Us-
ing this corpus, we train a speaker-independent feature mapping that
attempts to normalize out any emotional effects of a given speech ut-
terance. To this end, we consider all the non-neutral utterances of a
given speaker as our source utterances and the corresponding neutral
utterance of that speaker as the target utterance. The DTW align-
ment is first computed to the MFCC vectors within each speaker by
using cosine similarity as a vector similarity measure so that all the
non-neutral utterances utilize the corresponding neutral utterance as
a target. Additional care is taken to exclude many-to-one and one-
to-many assignments of the training vectors [17]. The aligned vector
pairs from all the 10 speakers are then pooled and used for training
a speaker-independent joint density GMM as detailed above. This
feature mapping is then applied to all training and test utterances in
our evaluation set.

Compensating for emotions rather than shouting is naturally a
more general problem setup. In fact, in preliminary experiments, we
trained only angry-to-neutral mapping on the same corpus as angri-
ness is among the seven emotions of [16] the one which corresponds
best with shouting. However, since we have a rather limited training
set with full covariance GMM modeling, including the other source
emotions helped preventing numerical problems in GMM training.
For the same reason (small training set relative to the dimensionality
of the joint feature space), we also experiment with two alternative
feature mappings. In the first approach, we train mapping on base
MFCC coefficients only and add the delta and double delta coeffi-
cients after feature mapping. In the second approach, we train the
mapping function directly on the higher dimensional MFCC + ∆ +
∆2 features (see below).

In the speaker identification experiments, we use standard
MFCCs extracted from 20 ms Hamming windowed speech frames
every 10 ms. We use two standard spectrum estimation methods,
FFT and LP with prediction order of p = 20, to compute spectra
of windowed frames. The power spectra are processed through a
27-channel triangular filterbank. The logarithmic filterbank outputs
are converted into MFCCs by discrete cosine transform. The first
and second time derivatives (∆ and ∆2) are appended to the first 16
MFCCs which leads to 48 dimensional feature vectors. Finally, cep-
stral mean and variance normalization (CMVN) are applied to the
features. Gaussian mixture model (GMM) is used as the classifier.
We use GMMs with 32 Gaussians trained by maximum likelihood
(ML) criterion [14] using 5 EM iterations.

We consider text-independent speaker identification in the ex-
periments. Due to relatively small amount of data, the speaker iden-
tification experiments are carried out using leave-one-out cross val-
idation to maximize the number of test trials. That is, each speaker
model is trained using his/her 23 sentences and the held-out utter-
ance is used for testing. Rotating over all 24 utterances and 22 speak-
ers, this yields 24×22 = 528 identification trials. In the experiments
we consider four different training and test conditions:

• Neutral - Neutral (N-N): Training and test utterances are both
in neutral speech mode.

• Shouted - Shouted (S-S): Shouted speech is used in both train-
ing and test.

• Neutral - Shouted (N-S): Each speaker model is trained using
neutral speech and tested with shouted speech.

• Shouted - Neutral (S-N): Each speaker model is trained using
shouted speech and tested with neutral speech

As the performance criterion, we use identification accuracy,
which is the ratio of the correctly identified trials to the total number
of trials.
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Table 1. Identification accuracy (%) for different speech modes us-
ing feature mapping

Training- Baseline: no Compensation applied to
Test compensation MFCCs MFCCs+∆+∆2

condition FFT LP FFT LP FFT LP

N-N 100.00 99.81 86.55 89.96 94.50 75.37
S-S 99.43 99.24 91.47 92.61 96.96 89.58
N-S 8.71 18.56 25.37 26.32 32.00 28.40
S-N 22.15 27.65 24.43 29.35 30.87 33.90

5. EXPERIMENTAL RESULTS

We first analyze the performance of the baseline speaker identifica-
tion system without any feature compensations. The identification
accuracy for different scenarios and with different features are pro-
vided as the first two columns of Table 1. In the matched vocal mode
cases (N-N and S-S), both the FFT and LP spectrum estimators yield
high identification accuracies. In the case of the mismatched vocal
mode cases (N-S and S-N), both methods degrade to unusable levels
which confirms the general observation on previous studies on the
topic. In the mismatched cases, LP outperforms FFT.

We next evaluated the shout compensation technique described
in Section 3 using different number of Gaussian components. Fig. 4
shows the identification rates for the N-S and the S-N conditions us-
ing FFT spectrum estimator. Feature mapping improves the identifi-
cation rates considerably in comparison to the uncompensated base-
line system. Comparing the two types of feature mappings, mapping
the full front-end (MFCC + ∆ + ∆2) works generally slightly bet-
ter. This might be because the full front-end presents richer feature
space and directly compensates also for the cepstral dynamics. Re-
garding the number of Gaussians, single Gaussian is not enough as
expected. Using 32 Gaussians yields the highest identification accu-
racy for both the N-S and the S-N conditions.

Identification rates using feature mapping are given in Table 1.
Feature mapping improves recognition accuracies for mismatched
modes (N-S and S-N) by a wide margin whereas identification
rates decreases in comparison to the uncompensated baseline on the
matched conditions (N-N and S-S). However, these relative degra-
dations on N-N (5.5 %) and S-S conditions (2.48 %) are acceptable,
given that the mismatched vocal modes experience impressive im-
provements (for instance, around 4-fold increase for FFT in the
N-S condition). In contrast to baseline performances, now FFT
outperforms LP in most cases.

Finally, the number of misidentified trials are given in Fig. 5
for FFT features before and after compensation. In the case of no
compensation (baseline MFCC) the errors are uniformly distributed
and for most speakers all the 24 trials are misidentified. However,
the compensation reduces the number of errors almost for every
speaker. Fig. 5 reveals that, while shout compensation is success-
ful for some speakers (e.g., 11 and 12), it makes no difference for
some speakers (e.g. 8, 10, 14 and 19). The rest of the speakers fall
in between these two extremes. There are two possible reasons for
such behavior. Firstly, the shout compensation mapping training set
is both small and language-mismatched with our evaluation data, as
no additional parallel Finnish shouted speech corpus was available.
Secondly, being trained from a pool of many speakers, the mapping
function does statistical averaging that may remove speaker cues in
addition to compensating shouting.

6. DISCUSSION

We evaluated text-independent speaker identification using shouted
speech and proposed a first step towards explicit shout compensa-
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Fig. 5. Number of misidentified trials per each speaker for no com-
pensation (left) and after compensation (right).

tion using joint density GMM mapping. Identification accuracy is
reasonable when the training and test conditions are matched but
large degradation on the recognition accuracy occurs in the case of
mismatched vocal modes. It was shown that this degradation on
recognition accuracy can partly be compensated by training feature
mapping on the MFCCs. It is important to note that the proposed
compensation mapping is speaker-independent and was trained on a
different set of speakers – actually even different spoken language,
due to the lack of Finnish data to train the mapping function. While
the authors of [4] uses a small database which consists of 12 male
speakers with total of 48 identification trials, our results are in rea-
sonable agreement with the results of that study. However, the au-
thor in [8] reported smaller degradation in shouted case and this is
probably because text-dependent speaker identification were consid-
ered using a database of 50 speakers (25 male and 25 female speak-
ers) and each speaker trained using 40 utterances (almost two times
more than our training data) and identification experiments carried
out with 1600 neutral and 3600 shouted identification trials whereas
in this study we have 528 identification trials.

The results for N-N and S-S in Table 1 after applying the trans-
formation reveals that the proposed transformation is smoothing out
some speaker specific information from MFCCs. This is also seen
from Fig. 3 where, by applying the transformation, most of the
MFCC fluctuations are softened for both neutral and shouted speech.
On the other hand, the reason for improved recognition accuracy
in N-S and S-N condition after applying the proposed transforma-
tion could be also found in reduced mismatch between neutral and
shouted MFCCs as can be seen from the second row of Fig. 3.

7. CONCLUSION

In this paper we evaluated the text-independent speaker identifica-
tion using shouted speech. Four different training/test conditions
have been analyzed and it has been found that recognition perfor-
mance of speaker identification is quite reasonable when the training
and test conditions are matched but large degradation on the recog-
nition accuracy occurs in the case of vocal effort mismatch between
training and testing. It was shown that this degradation on recog-
nition accuracy can be partly compensated by applying the feature
mapping on the MFCCs. Future work should address how such map-
ping could be trained ensuring that speaker features are retained.
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