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ABSTRACT

Accurate detection of depression from spontaneous speech
could lead to an objective diagnostic aid to assist clinicians to
better diagnose depression. Little thought has been given so
far to which classifier performs best for this task. In this study,
using a 60-subject real-world clinically validated dataset, we
compare three popular classifiers from the affective comput-
ing literature — Gaussian Mixture Models (GMM), Support
Vector Machines (SVM) and Multilayer Perceptron neural
networks (MLP) — as well as the recently proposed Hierarchi-
cal Fuzzy Signature (HFS) classifier. Among these, a hybrid
classifier using GMM models and SVM gave the best overall
classification results. Comparing feature, score, and decision
fusion, score fusion performed better for GMM, HFS and
MLP, while decision fusion worked best for SVM (both for
raw data and GMM models). Feature fusion performed worse
than other fusion methods in this study. We found that loud-
ness, root mean square, and intensity were the voice features
that performed best to detect depression in this dataset.

Index Terms— Mood detection, clinical depression, clas-
sifier comparison, affective sensing

1. INTRODUCTION

Clinical depression is a common mental disorder and dis-
abling condition that impairs an individual’s ability to cope
with daily life. Major depression is the leading cause of dis-
ability and the cause of more than two-thirds of suicides each
year [1]. Therefore, failure to diagnose depression in primary
care is a critical public health problem that results in high so-
cietal costs related to disability, morbidity, mortality, and ex-
cessive health care utilisation [2]. Moreover, effective depres-
sion treatment is limited by current assessment methods that
rely almost exclusively on patient-reported or clinical judge-
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ments of symptom severity [3], risking a range of subjective
biases. We believe that affective sensing technology will play
a major role in providing an objective assessment. Our goal
here is to investigate the utility of various classifiers for the
detection of depression. Ultimately, we want to develop an
objective affective sensing system that supports clinicians in
their diagnosis and monitoring of clinical depression.

The main contribution of this paper is a comparative study
of classifier performance — three popular classifiers from the
literature (Gaussian Mixture Models (GMM), Support Vec-
tor Machines (SVM), multilayer Perceptron neural networks
(MLP)) and the relatively new Hierarchical Fuzzy Signature
(HFS) classifier — for the task of accurately detecting depres-
sion. Beside comparing the classifier performances, we also
investigate which features or group of features perform better
for this task and compare different fusion methods, namely
feature, score and decision fusion.

2. RELATED WORK

Psychology research of depressed speech found several dis-
tinguishable prosodic features, such as differences in the
pitch, loudness, speaking rate, and articulation [3]. More-
over, the research found that formants are a feature signifi-
cantly distinguishing depressed from non-depressed speech
[4, 5], with a noticeable decrease in the second formant for
depressed compared to healthy controls [4]. There is convinc-
ing evidence that sadness and depression are associated with
a decrease in loudness and energy [6]. Jitter and shimmer
voice features were analysed for depression, finding higher
jitter in depression caused by the irregularity of the vocal fold
vibrations [6] and lower shimmer for depressed subjects [7].
Like the jitter feature, the harmonic-to-noise (HNR) feature is
higher for depressed, as the patterns of air flow in the speech
production differ for depressed and control subjects [8].
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In recent years, the automatic detection of depression us-
ing artificial intelligent techniques has been investigated, e.g.
[9, 10, 11]. While psychology investigations are concerned
with the overall patterns of speech using statistical measure-
ments of speech prosody, affective sensing approaches rely on
frame-by-frame low-level features extracted from the speech
signal, which has been shown to perform well for several fea-
tures. The first 3 formants features gave good classification
results in [10], as well as energy and loudness in [11]. Pitch or
FO classification results were not as good as expected [10, 11],
only if compared with recordings of the same person after
treatment (speaker-dependent classification) [9].

To complicate matters further, the little work on automatic
detection of depression from speech in the literature used dif-
ferent classifiers and different measures applied on different
datasets, which make the comparison of results even harder; a
general problem of most emotion recognition papers [12, 13].
Therefore, there is a need for a comprehensive comparison of
classifiers using the same dataset and measurements to iden-
tify the strongest feature (or group of features) and the most
suitable classifier for depression detection. In this paper, we
perform a comparative study of the performance of 4 clas-
sifiers, using 12 individual voice features, and also compare
fusing these features using feature, score and decision fusion.

3. REAL-WORLD CLINICALLY VALIDATED DATA

For the experiments, we used data collected in an ongoing
study at the Black Dog Institute, a clinical research facility
in Sydney (Australia), offering specialist expertise in depres-
sion and bipolar disorder. Subjects included healthy controls
and patients who had been clinically diagnosed with severe
depression (Hamilton Depression Rating Scale (HAM-D) >
15). To date, data from more than 40 depressed subjects and
40 controls (both females and males) has been collected af-
ter obtaining informed consent from the participants in accor-
dance with approval from the local institutional ethics com-
mittee. In this study, a gender-matched subset of 30 depressed
subjects and 30 healthy controls was analysed [11].

The audio-video experimental paradigm contains several
parts, including an interview with each subject. The interview
was conducted by asking specific open questions to describe
events that had aroused significant emotions. The interview
was manually labelled to extract pure subject speech, where
the total duration was 290min. Since the durations differ for
each subject, which may affect the comparison results, we
only used an equal amount of speech data from each subject
(92s) in this paper. We acknowledge that the amount of data
used here is relatively small, but this is a common problem
[5, 14] in similar studies. As we continue to collect more
data, future studies will be able to report on a larger dataset.

For feature extraction, voice features can be categorised
into acoustic and linguistic features [15]. Acoustic features
can also be categorised into low-level descriptors (LLD) and

statistical functionals, which are calculated based on the LLD
over certain units (e.g. words, syllables, sentences). Here, we
used the publicly available openSMILE software [16] to ex-
tract several LLD features (for each frame) and some func-
tional features (e.g. the deltas of the MFCC) as listed in Table
1. The frame size was set to 25ms at a shift of 10ms with a
Hamming window, which gave 9200 frames per subject.

4. CLASSIFIERS

Automatic emotion recognition approaches have been using
a variety of classifiers, both descriptive (generative) and dis-
criminative, but it is not clear, which one performs best for the
depression detection from speech. We compare 4 classifiers in
a binary (i.e. depressed/non-depressed) speaker-independent
scenario. To mitigate the effect of the limited amount of data,
a leave-one-subject-out cross-validation was used in all the
classifiers without any overlap between training and testing
data [17]. To measure the performance, several statistical
methods could be calculated [17]; we used the average recall.

4.1. Gaussian Mixture Models

GMM is a generative classifier widely used in speaker and
speech recognition as well as in recognising emotions [13].
Its advantage is modelling low-level (frame based) features
directly regardless of speech duration differences. GMM
were trained using a continuous Hidden Markov Model
(HMM) with a single state that used 16 weighted mixtures of
Gaussian densities [17] using the HTK software [18]. How-
ever, the major disadvantages of GMMs are that they require
intensive computations and parameter optimisation, as well
as the unclear choice of the number of mixtures. In this work,
diagonal covariance matrix was used, and the choice of the
number of mixtures was fixed to ensure consistency in the
comparison of classifiers, acknowledging that some features
benefit more from more detailed modelling.

4.2. Support Vector Machines

SVM is a discriminative classifier, which has been widely
used in speech, vision and many other classification tasks
[13]. It is often considered the state-of-the-art classifier, since
it provides good generalisation, although it may not be the
best for every case [17]. When it comes to low-level speech
features, the dimensionality of the SVM super-vector de-
pends on the duration of speech, which might be problematic
for unbalanced speech durations. It also causes a very high-
dimensional feature vector. As we used equal amounts of
speech data from each subject, full low-level (frame-based)
features were used to build the SVM super-vector (9200 val-
ues for each feature dimension), as well as the means of the
16 mixtures of each subject’s GMM model as the SVM super-
vector (16 values for each feature dimension). In this study,
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Fig. 1. Constructed Fuzzy Signature

using GMM models is a novel method for dimensionality
reduction, enabling the use of hybrid generative and discrim-
inative classifiers. To increase the accuracy of the results of
SVMs, the cost and gamma parameters were optimised. We
employed LibSVM [19] with a radial basis function kernel
and a wide grid search range for the best parameters.

4.3. Hierarchical Fuzzy Signature

HFS [20] is a recent classifier, especially to the area of emo-
tion recognition. It overcomes the limitation of fuzzy rules, by
handling problems with complex structure and dealing with
missing data. Fuzzy signatures can be considered as special,
multidimensional fuzzy data. It compositions data into vec-
tors of fuzzy values, each of which can be a further vector
[20]. HFS have been successfully applied to a number of
applications, such as cooperative robot communication, per-
sonnel selection models, Severe Acute Respiratory Syndrome
pre-clinical diagnosis system, etc. [21, 22]. We hypothesize
that, given the continuous range nature of emotions in gen-
eral and the overlap between them, fuzzy systems might be
suitable for the task. However, the choice of the member-
ship function, the aggregation function, and the number of
fuzzy sets are critical for getting accurate results. In this
study, we adopted the HFS construction approach based on
the Levenberg-Marquardt method ([23]). The fuzzy signature
was constructed using the 16 means of each subject’s GMM
model mentioned earlier as the branches. Each branch rep-
resents a fuzzy value calculated using Fuzzy C Mean (FCM)
clustering into three fuzzy sets (Low-Med-High) (Figure 1).

4.4. Multilayer Perceptron Neural Network

MLP are a special case of the artificial neural network, which
has been used in a wide range of applications, including pat-
tern recognition and emotion recognition. Typically, an MLP
consists of an input layer, one or more hidden layers, and an
output layer, where each layer consists of nodes (perceptrons)

that are connected to the nodes of the next layer. MLP net-
works are usually used for modelling complex relationships
between inputs and outputs or to find patterns in data. How-
ever, the network topology including the number of hidden
layers, the number of perceptrons in each layer, the choice
of the activation function and the training algorithm, is not
trivial and complicates the model. Therefore, MLPs are vul-
nerable to overfitting, requiring large amounts of training data
[17]. In this paper, we implemented an MLP using two hid-
den layers, with 16 and 4 perceptrons respectively, chosen
empirically and kept fixed for all features to ensure consis-
tency in the comparison. The input for the MLP were the 16
mixture means of each subject’s GMM model mentioned ear-
lier and the target output was the binary label of the classes
(1 for Depressed, 0 for Control). To create the MLP, we used
Levenberg-Marquardt as the training function, a hyperbolic
tangent sigmoid as activation function for the hidden layers
and the mean squared error as the cost function.

5. FUSION

To determine the features best suited to classify depression,
we investigated the performance of individual features with-
out normalisation. We also investigated fusing those individ-
ual features using different methods: feature, score, and deci-
sion fusion. Feature fusion is a commonly used in multimodal
systems, e.g. in audio-video speech processing. The feature
vectors from each individual system have to be normalised
before fusion. Although all features were extracted from the
same modality, we fused them in the same manner as if they
were from different modalities. We first normalised individ-
ual features using percentile normalisation (range from 0 to
1), then fused and fed them to the classifiers. Score fusion
was performed by merging the score results (likelihood ratio
in the case of GMM) of the individual features classification,
using a weighted sum. Finally, the decision fusion used a
weighted majority voting of the classification results of each
individual feature. The weights in the score and decision fu-
sion were selected using a grid search for the best results.

6. EXPERIMENTS AND COMPARISON

The results of the comparison of classifiers (Table 1) show
that the hybrid SVM with GMM outperformed the other clas-
sifiers in each single feature, with FO, HNR and formants in
SVM with raw data being exceptions. Remarkably, FO, for-
mants, jitter and shimmer had a high recognition rate using
both SVMs (with raw data and GMM), but not with GMM
due to the sparse data, indicating that GMM benefit from con-
tinuous data streams [24]. In contrast, SVM easily separates
sparse data. Note that although SVM using raw data came
in second, it may not be suitable for unbalanced speech dura-
tion. The HFS and MLP classifiers performed not as well, but
different topologies and structures need to be investigated.
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Table 1. Average recall (in %) for individual and group features for different classifiers and different fusion methods

Classifier: GMM SVM raw data SVM + GMM HFS + GMM MLP + GMM
Feature Group Feature Feature 9200 x feature 9200 x feature 16 x feature 16 X 3 Fuzzy sets 16 x feature Feature
Dimension dimension dimension dimension X feature dimension Performance
dimension Average
Pitch FO 1 25.00 66.36 65.43 31.25 41.58 45.92
Voicing Probability 1 55.14 62.82 70.09 48.29 55.01 58.27
FO quality 1 72.10 71.53 7291 55.05 60.00 66.32
MFCC MFCC 13 56.70 65.15 69.39 25.00 56.70 54.59
MFCC, Deltas 39 62.00 63.39 75.25 25.00 56.67 56.46
Energy Log 1 66.74 70.36 76.79 72.29 60.65 69.36
RMS 1 72.88 69.39 80.54 66.48 71.69 72.20
Intensity Intensity 1 76.79 77.95 78.62 62.78 60.72 71.37
Loudness 1 69.48 75.12 85.04 68.86 68.52 73.40
Formants 3 formants 6 25.00 66.97 63.39 62.78 53.35 54.30
Voice Quality Jitter 2 1.61 70.00 77.00 25.00 69.48 48.62
Shimmer 1 1.61 70.00 73.29 25.00 66.34 47.25
HNR 1 55.50 75.42 68.52 57.50 50.00 61.39
Average for Features 49.27 69.57 73.56 48.10 59.28 -
Pitch Group 3 25.00 63.48 68.86 48.33 56.70 52.47
Feature Fusion: Energy Group 2 72.88 71.53 80.00 68.63 68.86 72.38
Percentile Nor- Intensity Group 2 77.78 76.44 83.48 53.75 73.33 72.96
malisation Voice Quality Group| 4 0.00 59.26 70.83 81.25 56.70 53.61
All Group 30 65.63 67.94 73.33 25.00 63.33 59.05
Average for Feature Fusion 48.26 67.73 75.30 55.39 63.78 -
Pitch Group 3 75.86 71.53 7291 56.79 65.15 68.45
Score Fusion: Energy Group 2 75.57 76.44 81.99 72.29 73.44 75.94
Weighted Sur'n Int_ens1ty Gfoup 2 71.78 77.95 85.04 71.31 68.86 76.19
Voice Quality Group| 3 55.49 70.00 77.00 65.86 69.48 67.57
All Group 13 78.85 66.36 72.91 75.71 76.79 74.12
Average for Score Fusion 72.71 72.46 77.97 68.39 70.74 -
Pitch Group 3 72.09 72.09 73.81 55.78 58.34 66.42
Decision Fusion: Energy Group 2 72.88 70.36 80.54 72.29 76.67 74.55
Weighted Major- | Intensity Group 2 76.79 79.14 85.04 68.86 65.15 75.00
ity Voting Voice Quality Group 3 55.49 75.42 77.00 57.50 69.48 66.98
All Group 13 78.85 84.88 91.67 73.81 76.44 81.13
Average for Decision Fusion 71.22 76.38 81.61 65.65 69.22 -

To increase the accuracy, we compared unimodal fusion
methods, such as feature, score, and decision fusion. As can
be seen in Table 1, (where the bold numbers indicate improve-
ments from using single features), on average fusing features
at the feature level gave either similar or even less accurate
results than fusing them at the score or decision level. As an
exception, the intensity group feature fusion using MLP and
the voice quality group feature fusion using HFS gave better
results than score or decision fusion. On average, score fusion
performed better than decision fusion with most classifiers
but SVM, where decision fusion performed better in both raw
data and GMM. Fusing all features in a decision level major-
ity voting increased the results strongly. Both HFS and MLP
score-level fusion outperformed their single features classifi-
cation, indicating that better topology, structure and optimiza-
tion would potentially lead to better recognition rate.

The experiments showed that loudness, RMS energy, and
intensity were the strongest features for detecting depression,
showing high results with every classifier used, even when
fusing them as groups, which is in line with psychological
findings that depression is associated with a decrease in loud-
ness and energy [6]. Although depressed speech has a mono-
tone characteristic indicated by changes in pitch and formants
[4, 3, 25], their performances here were not as good as ex-
pected. That might be an indication that pitch and formants
features are more suitable in a speaker-dependent compari-

son. The voice quality group performed relatively better than
pitch and formants when using SVMs, which is in line with
psychological conclusions that depressed speech is charac-
terised by irregularities in the vocal fold vibrations [6, 7, 8].

7. CONCLUSIONS

We are interested in accurate detection of depression from
spontaneous speech, which could lead to an objective diag-
nostic aid to assist clinicians. We compared the performance
of various acoustic and prosodic features and classifiers for
this task (GMM, SVM, MLP, and HFS) on a 60-subject real-
world, clinically validated dataset. We also investigated the
usage of a hybrid classifier, using GMM models as input to
the other classifiers, which also reduced the dimensionality.
Among the 4 classifiers, the hybrid classifier using GMM with
SVM performed best overall. Amongst the fusion methods,
score fusion performed better when combined with GMM,
HFS and MLP classifiers, while decision fusion worked best
for SVM (both for raw data and GMM models). Feature fu-
sion exhibited weak performance compared to other fusion
methods. Loudness, root mean square, and intensity were the
strongest voice features to detect depression using the classi-
fiers in this study. In future work, these findings will be inves-
tigated for generalisation across cultures (American, Saudi)
and languages (Arabic).
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