
ESTIMATING PHONEME FORMANT TARGETS AND COARTICULATION PARAMETERS
OF CONVERSATIONAL AND CLEAR SPEECH

Brian O. Bush and Alexander Kain

Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR

ABSTRACT

We present a data-driven formant model and methodology for dis-
covering its parameters, namely phoneme targets and coarticulation
functions for consonant-vowel-consonant (CVC) words from fully-
automatic formant data. The model uses formant targets that are
speaker dependent, but independent of speaking style and phonemic
context. We used a global error measure to search for optimal for-
mant targets for all phonemes, including classes of sounds where
formants are not directly observable. Analysis of coarticulation pa-
rameters found significant differences in parameters between clear
and conversational speech. Estimated formant targets were largely
in agreement with acoustic-phonetic expectations. An intelligibility
test validated that resynthesized CVC words using modeled formant
trajectories were nearly as intelligible as resynthesized CVC words
using observed formant trajectories.

Index Terms: coarticulation, formants, clear speech.

1. INTRODUCTION

We present a methodology that models formant trajectories as a sum
of phoneme targets weighted by coarticulation functions. In contrast
to other work on formant target estimation and coarticulation that
has focused on context-specific clear speech [1, 2, 3, 4, 5, 6, 7, 8], we
model speech independently of context and speaking style. Our pre-
vious work [9] used a genetic algorithm to estimate formant targets;
however, we found multiple optimal solutions in formant targets.
Therefore, in this study, we performed an exhaustive search of the
formant target space using fully automatic formant estimation with
the primary goal of finding context- and style-independent phoneme
targets. Our model has also been expanded to consider data in un-
voiced regions, whereas previously formant trajectories were mod-
eled from voicing onset to offset of the vowel only [2, 10, 11, 12].

In this paper, we first introduce a parallel style corpus (Sec. 2),
our proposed formant trajectory model (Sec. 3), and an approach to
estimating the model’s phoneme target and coarticulation parameters
(Sec. 4). We then report on the resulting model parameters (Sec. 5)
and the outcome of a speech intelligibility test (Sec. 6) before con-
cluding (Sec. 7).

2. PARALLEL STYLE CORPUS

One male speaker produced the same speech material in two differ-
ent speaking styles. For conversational speech (CNV), the speaker
was asked to speak as if one were talking with a colleague at a nat-
ural pace [13]. For clear speech (CLR), the speaker was asked to
“enunciate consonants more carefully and with greater effort than
for CNV speech and avoid slurring words together” [14].
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Fig. 1: F1/F2 formant frequency relationship between CNV and CLR
at vowel centers, arrows pointing from the former to the latter.

The corpus was composed of 212 consonant-vowel-consonant
(CVC) words (e. g. “cat”, “well”) constructed from a combination
of 21 initial and final consonants, and eight monophthong vowels,
spoken in a carrier sentence [11, 12]. The carrier sentences pro-
vided neutral meaning and had a consistent phoneme /d/ before the
target word in a sentence final context (e. g. “I know the meaning
of the word will”). Since /ao/ is often pronounced as /aa/ in West-
Coast American English we merged these two phonemes into /aa/.
Affricates were not represented in this corpus since they are com-
posed of two allophones and thus have two different formant tar-
gets. Each token was rendered twice in both styles, for a total of 212
words × 2 styles × 2 renditions = 848 CVC tokens. Formants were
automatically estimated using a standard formant tracker [15, 16].
Fig. 1 shows the F1/F2 formant frequency relationship between the
two styles at vowel centers. Note the expanded vowel space of CLR
speech, as compared to CNV speech [17].

3. TRAJECTORY MODEL

The formant trajectory model presented here is an extension of pre-
vious work [11, 2, 10]. An individual formant trajectory X(t) of a
CVC word is modeled as

X̂(t;Λ) = dCl (t) ·TCl +dV (t) ·TV +dCr (t) ·TCr (1)

which is a convex linear combination of TCl , TV , and TCr represent-
ing formant target values for the prevocalic consonant Cl , the me-
dial vowel V , and the postvocalic consonant Cr. The scalars dCl (t),
dV (t), and dCr (t) are coarticulation functions based on the sigmoid
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Fig. 2: Example of the model for the word “will” in CNV and CLR styles. Upper panels show spectrograms (with phoneme-specific shading),
observed formant trajectories X(t) (thin yellow (F1), orange (F2), and red lines (F3) with circles), model formant trajectories X̂(t) (thick
line), and model targets T (magenta lines). Lower panels show coarticulation functions for F2, where magenta circles are locations of
sigmoid centers p, and sigmoid slopes s indicated as diagonals of magenta boxes.

d(t;s, p) = (1+ es·(t−p))−1 with

dCl (t;sl , pl) = d(t;sl , pl)

dCr (t;sr, pr) = d(t;−sr, pr) (2)
dV (t) = 1−dCl (t)−dCr (t)

where {sl ,sr} represent positive sigmoid slope (slow versus fast
transition), and {pl , pr} sigmoid midpoint position (and point of
maximum slope), measured relative to their respective phoneme
boundaries. Previously, an exponential function was used to model
formant trajectories of vowels in /b,d,g/ contexts [2], however a sig-
moid was selected to better fit cases where Cl or Cr is an approxi-
mant. Note that the rate of change represented by d functions is not
normalized with respect to the length of the underlying transition.
The complete set of parameters Λ = {TCl ,TV ,TCr ,sl , pl ,sr, pr} are
specific to an individual formant trajectory, and thus the model ap-
proximates concurrent formant trajectories asynchronously. Model
parameters are constrained by the following conditions: (1) the al-
lowed range of pl is from the center of Cl to the center of V , (2) sim-
ilarly the allowed range for pr is from the center of V to the center of
Cr, and (3) dCl (t)+ dCr (t) ≤ 1∀t to ensure convexity. An example
application of the model to the word “will” is shown in Fig. 2.

4. ESTIMATING MODEL PARAMETERS

In order to discover optimal formant targets, we define the per-token
model weighted root-mean-square error (RMSE)

E (X ,Λ) =

√
1

∑
tr
t=tl w(t)

tr

∑
t=tl

w(t) ·
(
X(t)− X̂(t;Λ)

)2 (3)

where X(t) and X̂(t) are the observed and estimated individual for-
mant trajectories, tl is the center of Cl , and tr is the center of

Cr. The weighting factor 0 ≤ w(t) ≤ 1 indicates our confidence
in the formant measurement, calculated from formant bandwidth.
We iterate over all combinations of discretized parameter values
while calculating the model error, thus finding the parameter set
Λ∗ that provides the lowest error. We perform this for F1, F2,
and F3 separately. Specifically, we iterate over all combinations
of target parameters {TCl , TV , TCr } using F1=200,220, . . . ,900 Hz,
F2=400,420, . . . ,2800 Hz, and F3=900,920, . . . ,3700 Hz, and coar-
ticulation parameters {sl ,pl ,sr,pr} using s = 10,30, . . . ,110 and the
relative p =−40,−30, . . . ,40 ms, calculated by subtracting the cor-
responding phoneme boundary time from the p in Eq. 2.

Given a specific token, we can sweep any individual parameter
λ ∈ Λ along its prescribed interval, while searching the remaining
parameters for the lowest model error

Esweep(λ ) = min
Λ\λ

E(X ,Λ) (4)

where \ represents set subtraction. The minimum error sweep
Esweep(λ ) allows consideration of the effect of an individual parame-
ter on the lowest possible per-token RMSE (see Eq. 3). Fig. 3a shows
an example plot of Esweep(TCl ); note that there are several solutions
where different TCl values lead to similarly low errors. All solu-
tions share {TV = 1880,Tcr = 1680,sl = 50,sr = 30, pr = −0.08},
but there is a TCl / pl interaction: to achieve a similarly low er-
ror the value of pl increases as TCl increases, while all other pa-
rameters stay the same, e. g. Λ1 = {TCl = 620, pl = −0.04, . . .} and
Λ4 = {TCl = 1540, pl =−0.01, . . .}. These multiple solutions for TCl

show that for some tokens it would prove difficult for a hill-climbing
approach to discover the true optima, and token-specific target esti-
mation could possibly yield several different targets, thus validating
our choice of using a method that avoids local minima.

We collected individual token-based error sweeps for TCl , TV and
TCr for all tokens, and constructed a global error sweep Eglobal for
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Fig. 3: Minimum Error Sweeps

each phoneme by averaging all error sweeps for that phoneme inde-
pendent of context and style. For consonants, we combined their pre-
and postvocalic instances (see Fig. 3b). For each of the 29 phonemes
in our corpus, a global phoneme target value was found at the mini-
mum of its associated Eglobal(T ) function, for each formant F1, F2,
and F3 independently. Phoneme targets /r/ and /g/ required slight
manual adjustment by shifting F3 formant targets upwards to sat-
isfy F3−F2>200 Hz. Finally, using the estimated global phoneme
targets, we re-estimated each token’s optimal set of coarticulation
parameters {sl , pl , sr, pr}. However, to best match formant slopes,
we substituted ∆X(t) and ∆X̂(t) for X(t) and X̂(t) in Eq. 3.

5. ANALYTIC RESULTS

Final formant target locations are shown in Fig. 4. The contours are
generated by the normalized quantity maxT Eglobal(T )−Eglobal(T )
for each point in F1/F2 space for the global phoneme-specific error
sweeps, resulting in a hill-like contour with bands at 1, 5 and 10%.
The formant targets for vowels and consonants are largely in their
expected locations [18, 19]. We note that some consonants appear to
have target ranges instead of points, e. g. /p/ and /k/.

For a meaningful analysis of coarticulation parameters {sl , pl ,
sr, pr}, we only included tokens with neighboring targets that dif-
fer by at least 300 Hz. Regarding the sigmoid slope parameters sl

and sr, their means were as follows: for F1, sl=72 (σ=37) and sr=76
(σ=38), for F2, sl=46 (σ=31) and sr=55 (σ=37), and for F3, sl=62
(σ=41) and sr=68 (σ=38). We defined ∆sl as CLR sl minus CNV sl
from parallel tokens, and analogously for ∆sr. For the former, we
computed means ∆sl=7 (σ=43) for F1, ∆sl=10 (σ=41) for F2, and
∆sl=19 (σ=38) for F3, indicating that CLR F1, F2, and F3 coarticu-
lation functions have faster transitions than their CNV counterparts,
for this speaker. This result was validated using a one-sample t-test.
Significance tests for ∆sr exhibited no such relationship for F1, F2,
or F3 (possibly due to the sentence-final position of the CVC word).

Fig. 5 shows histograms for coarticulation function values at
consonant centers dCl (tl) and dCr (tr), and the maximum value during
the vowel maxdv(t). We observe that the CLR style histograms have
more occurrences of higher values than the CNV style. For vowels,
this was expected since their trajectories are more likely to reach
their target in CLR style (maxdV (t) ≈ 1), while undershoot is more
prevalent in CNV style (maxdV (t)� 1).

6. PERCEPTUAL VALIDATION

A perceptual evaluation was conducted by means of a speech intelli-
gibility test to examine whether resynthesis from model parameters
produces speech that is as intelligible as vocoded speech, thus vali-
dating the model and its estimation procedure.

Three stimulus conditions were created for 212 CVC words in
CNV and CLR styles: (1) natural, (2) vocoded, and (3) model, for
a total of 212 words × 2 styles × 3 conditions = 1272 stimuli in
a Latin squares design. All stimuli were loudness normalized us-
ing an A-weighted [20] RMS measure and 12-talker babble noise
was added to prevent saturation effects. The energy of the noise
was set to a signal-to-noise ratio of +3 dB. Resynthesis was accom-
plished by using a hybrid linear predictive coding / formant analysis-
synthesis vocoder with energy and pitch trajectories preserved. For
the model condition, automatically estimated formant frequency tra-
jectories were replaced with those of the model.

During testing, an individual listened to stimulus waveforms
through circumaural headphones, binaurally in a quiet room. Each
listener was presented with 212 stimuli in randomized order. With
each stimulus, the listener was provided a closed set of five possi-
ble answers to the question "What did you hear?", with four decoy
terms among the correct term (e. g. “fan”, “van”, “pan”, “than”, and
“ban”). Decoy terms were selected based on the closest phonetic
similarity to the target term, using a list of common CVC words.
The similarity measurement measured the average phonetic distance
from the target term, where distance between any two phonemes
was defined as the Euclidean distance of a four-dimensional man-
ually derived description (sonority, manner, place and height) of
each phoneme. 18 adults aged 23–55 with self-reported normal hear-
ing, all native speakers of American English and unfamiliar with the
goals of the study, participated in the experiment.

The average proportion of words heard correctly were as fol-
lows: natural 89.7% (σ=4.1), vocoded 78.8% (σ=5.6), and model
76.0% (σ=5.7), combining styles. We performed a planned one-
sample two-tailed t-test comparing the vocoded and model condi-
tions, yielding a value of 2.2 with 17 degrees of freedom, significant
at 0.05. Measuring the effect size using Cohen’s d function [21]
yielded a value of 0.6, considered a “moderate” effect size. Consid-
ering speech style separately, we obtained for CLR speech: natural
94.1% (σ=3.7), vocoded 88.9% (σ=5.4), and model 84.8% (σ=4.8),
while for CNV speech we obtained: natural 85.5% (σ=7.6), vocoded
68.8% (σ=7.3), and model 66.8% (σ=9.3). The CLR speech bene-
fit is apparent when comparing the CNV and CLR natural conditions.

8019



200 300 400 500 600 700 800
F1

500

1000

1500

2000

2500

F2

uw
uh

aa

ah

iy

ih

eh ae

(a) Vowels (with observed data)

200 300 400 500 600 700 800
F1

500

1000

1500

2000

2500

F2

l
r

w

y

(b) Approximants (with observed data)

200 300 400 500 600 700 800
F1

500

1000

1500

2000

2500

F2

nm

ng

(c) Nasals

200 300 400 500 600 700 800
F1

500

1000

1500

2000

2500

F2

s

sh

thf

h

(d) Unvoiced fricatives

200 300 400 500 600 700 800
F1

500

1000

1500

2000

2500

F2

z

dh
v

(e) Voiced fricatives

200 300 400 500 600 700 800
F1

500

1000

1500

2000

2500

F2

b
d

g

p

t k

(f) Unvoiced and voiced stops

Fig. 4: Formant targets (with observed data where available) and iso-contours based on the global minimum of Esweep
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Fig. 5: Histograms of coarticulation function values

Moreover, we observe that CNV speech appears to be relatively more
difficult to resynthesize with our chosen vocoder. However, for CNV
speech, the model condition is trailing the vocoded condition by only
2.0 percentage points, versus 4.1 for CLR speech.

7. CONCLUSIONS

In this study, we presented a new data-driven methodology to esti-
mate vowel and consonant targets for one speaker. We identified the
existence of local optima in the error for single tokens. This find-
ing highlights the source of difficulties in finding consistent formant
targets in our previous work. Our new approach estimates global
phoneme formant targets robustly using fully automatic estimation
methods and highlights statistically significant differences in coar-

ticulation parameters between CLR and CNV speech. An intelligibil-
ity test validated that resynthesized CVC words using modeled for-
mant trajectories were nearly as intelligible as those using observed
formant trajectories. While the model condition did not perform as
well as the vocoded condition, the difference of 3% can be consid-
ered small, especially in light of the compactness of the model pa-
rameter set versus the raw formant trajectories, with a compression
ratio of approximately 1:12 for our corpus. We speculate that some
phoneme targets have ranges or multiple targets; e. g. it is possible
that targets are different in the onset vs coda of a stressed syllable.

Our findings demonstrate fully automatic estimation of phoneme
formant targets and provides evidence that targets are consistent be-
tween speech styles. Future work will apply our model to more
speakers.
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