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ABSTRACT
This paper proposes a new approach to text-to-speech based on
Gaussian processes which are widely used to perform non-parametric
Bayesian regression and classification. The Gaussian process re-
gression model is designed for the prediction of frame-level acoustic
features from the corresponding frame information. The frame
information includes relative position in the phone and preceding
and succeeding phoneme information obtained from linguistic in-
formation. In this paper, a frame context kernel is proposed as a
similarity measure of respective frames. Experimental results using
a small data set show the potential of the proposed approach without
state-dependent dynamic features or decision-tree clustering used in
a conventional HMM-based approach.

Index Terms— acoustic models, statistical speech synthesis,
Gaussian process regression, non-parametric Bayesian model, con-
text kernel

1. INTRODUCTION

Statistical parametric speech synthesis has been developed for over
a decade. Utilization of hidden Markov model (HMM) in speech
synthesis, which is one of the most powerful generative models to
express time-series information like speech signals, has enabled us
to provide not only the naturalness of synthetic speech but also the
distinctive techniques for parametric approach such as average voice
models and speaker and style adaptation [1, 2].

In the HMM-based speech synthesis, phones are partitioned into
some hidden states of HMMs, and the static and dynamic acous-
tic features are parameterized by their means and variances for each
context-dependent state. However HMM is not always an appro-
priate model for acoustic features to be synthesized. For example,
in spite of the continuously changing characteristics of the acoustic
features, the hidden-state space is discrete. Although dynamic fea-
tures enable us to generate smoothly changing feature sequence from
the discrete states, the parametric representation of acoustic features
has a limitation. In fact, a fixed number of state-dependent dynamic
features fail to generate some short-time variations. Moreover, there
is a problem in context-dependent decision-tree clustering that aims
to make robust models to unseen contexts. Averaging the acoustic
features of a leaf node of the tree causes over-smoothing effect, and
the synthetic speech samples tend to be muffled.

To overcome the limitations of parametric models, we consider
here Gaussian processes (GPs) known as non-parametric Bayesian
models for regression and classification [3]. “Non-parametric” im-
plies that the model complexity grows with the increase of data size.
This leads to an advantage that GP has a flexibility for the com-
plexity of the model. GP also has a robustness against over-fitting

by Bayesian inference. In addition, since GP is a kernel method,
various kinds of data can be used as input variables by defining the
kernel function of respective samples [4]. In recent years, some ap-
proaches using GP have been proposed to speech processing such
as speech enhancement [5], voice conversion [6], and speech repre-
sentation [7]. Henter et al. [7] challenged the problem of the state
discreteness. They expanded the discrete states to continuous vari-
ables of a latent space and assumed the GP on a frame-level function
that transforms the latent space variables into the acoustic features.
Specifically, Gaussian process dynamical model (GPDM) was used
to express the latent space. However, it is not easy to apply GPDM
to text-to-speech directly because of the difficulty in correlating the
latent space variables with the linguistic information of a given input
sentence to be synthesized.

In this paper, we propose an acoustic modeling technique for
speech synthesis based on the GP regression. We use GP on a frame-
level function in the same way as [7] except that frame-level in-
formation obtained from linguistic information is transformed into
acoustic features by the frame-level function. The significant differ-
ences from the conventional HMM-based method are that the pro-
posed approach is the frame-level regression and it does not use the
states or dynamic features, and it avoids a tree-based clustering be-
cause the kernel of contexts can be the alternative to the clustering.
We construct kernels for frame information and evaluate the effec-
tiveness through the experiments using a small size of data set.

2. GAUSSIAN PROCESS FOR REGRESSION

Suppose that we have N observations as a training data set D =
{(xi, yi)|i = 1, . . . , N}, where xi is a vector consisting of ex-
planatory variables, and yi is an output variable. We assume that
yi is given by

yi = f(xi) + ε, (1)

where f(xi) is noise free observation and ε represents a Gaus-
sian noise of N (0, σ2

n). Let y = [y1, . . . , yN ]> and X =
[x1, . . . ,xN ]> be matrix forms of all training data.

When f(x) is a Gaussian process, the GP prior is given by

p(y|X) = N (0,K + σ2
nI), (2)

where K is a Gram matrix whose element is given by

Kmn = k(xm,xn), (3)

and k(xm,xn) is a kernel function, which is also called a covariance
function.
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The goal of GP regression is to infer the continuous distribution
of y∗ given a new input vector x∗. The joint distribution of y and y∗
is given by
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where k∗ is the column Gram vector that has the element k(xn,x∗)
(n = 1, . . . , N). The predictive distribution for the new observation
can be obtained by the following conditional distribution:

p(y∗|y,X,x∗) = N (µ∗, σ
2
∗) (5)

µ∗ = k>
∗ (K + σ2

nI)−1y (6)

σ2
∗ = k(x∗,x∗) − k>

∗ (K + σ2
nI)−1k∗ + σ2

n. (7)

The inversion of (K + σ2
nI)−1 requires O(N3) computations. For

the practical implementation, the parameter vector

α = (K + σ2
nI)−1y (8)

that depends only on the training data set is calculated in the training
step. When generating the new target mean, we compute the inner
product

µ∗ = k>
∗ α, (9)

which requires O(N) computational cost.
In order to make the model by GP, we need to construct the

kernel function. The requirement for the kernel function is that the
Gram matrix should be positive semi-definite and symmetric. In this
paper we use typical kernels, a square exponential (SE) kernel and
a linear kernel. The SE kernel is the most widely used stationary
kernel as the measure of “similarity” of two input vectors. For one-
dimensional input, the SE kernel is defined by

k(xm, xn) = exp

„

− (xm − xn)2

l2

«

, (10)

where l denotes a length-scale hyper-parameter. The predictive mean
of new input is obtained by the weighted sum of nearby samples [3].
The linear kernel is given by

k(xm, xn) = xm · xn. (11)

This kernel assumes the linearity between output and input features.
In addition, it should be noted that it is possible to construct a new
kernel by combining multiple arbitrary kernel functions by means of
some operations such as sum, product, and convolution [4].

3. ACOUSTIC MODELING USING GP REGRESSION

3.1. Frame context

In this paper, we consider a simple set of input features as an ini-
tial step of the proposed approach. For the explanatory input vari-
ables of the regression model, frame-level features obtained from
linguistic information are used. We refer to these features as frame
context. Figure 1 shows an example of the frame context. The
frame context consists of position and phone context. For the po-
sition context, the relative frame position in the phone is employed
where the beginning and end of the phone are set to 0 and 1, respec-
tively. For the phone context, we use a set of preceding, current,
and succeeding phonetic features. We introduce binary variables
({positive = +1, negative = −1}) for each phonetic feature listed
in Table 1 based on a balanced distinctive phonetic feature set [8].
Let M be the number of phonetic features, then 3M -dimensional
binary-valued vector is constructed.

Frame context:

– Position context:

– Phone context:
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/n//k/preceding current following/a/
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+

–

Phonetic feature table

Fig. 1. Example of frame context, i.e., a frame-level input variable
set for the GP regression. This example shows the frame context
for a frame positioned in phone /a/, which is in between preceding
phone /k/ and following phone /n/.

Table 1. Binary phonetic features.

Phonetic features
vocalic, high, low, anterior, back, coronal, plosive,
affricative, continuant, voiced, nasal, semi-vowel, silent

3.2. Frame context kernel

A proposed frame context kernel is defined as a product of two ker-
nels.

k(xm,xn) = kp(x(p)
m ,x(p)

n )kc(x
(c)
m ,x(c)

n ), (12)

where kp(x
(p)
m ,x

(p)
n ) and kc(x

(c)
m ,x

(c)
n ) denote position kernel and

phone context kernel, respectively. The position kernel represents
the similarity of the positions in the phones whereas the phone con-
text kernel represents that of the phone context.

3.2.1. Position kernel

The SE kernel is used for position kernel and is given by

kp(x
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where pn is the relative position of the n-th frame.

3.2.2. Phone context kernel

We examine two different phone context kernels in this paper. One
is sum of SE kernels and the other is a linear kernel. The former one
is defined by

kc(x
(c)
m ,x(c)

n ) =

3M
X

i=1

θ2
ci exp
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Fig. 2. An outline of speech synthesis process in the proposed ap-
proach.

where lci is a scale hyper-parameter and θci is a hyper-parameter
that represents the relevance of the i-th phonetic feature. The kernel
value becomes maximum when the input phones are the same. By
multiplying this by the position kernel, the generated parameter of a
new frame results in the weighted sum of the training samples whose
values of input variables are close to those of the new frame.

The linear kernel is given by

kc(x
(c)
m ,x(c)

n ) =

3M
X

i=1

θ2
cix

(c)
m,ix

(c)
n,i. (15)

This kernel assumes that the acoustic features in the same position
exist on a hyperplane in the 3M -dimensional phonetic feature space.

3.3. Speech synthesis system

Figure 2 shows an outline of the speech synthesis using the frame
context kernel. The framework is based on the general GP regres-
sion. Training procedure is as follows:

1. Frame-level acoustic features such as mel-cepstral coeffi-
cients and fundamental frequency are extracted from the
training data.

2. The frame context is extracted from the transcriptions and an-
notations including phone boundaries of the training data.

3. Gram matrix between the frames of the training data and the
parameter vector α in Eq. (8) is calculated.

Synthesis procedure is as follows:
1. The frame context is extracted from the input sentence.
2. Gram matrix between the frames of the training and new input

data is calculated.
3. The means of the predictive distribution are calculated by

multiplying the Gram matrix k∗ and α, and used as gener-
ated acoustic features.

4. The output waveform is synthesized using the generated fea-
tures.

Table 2. Spectral distortions of generated parameter sequence using
position context. The values represent mel-cepstrum distances [dB].

Phoneme HMM GPR Phoneme HMM GPR

a 6.02 6.08 k 6.02 5.98
i 7.11 7.09 t 4.35 4.41
u 7.18 7.16 n 6.27 6.28
e 6.04 6.07 s 5.18 5.03
o 6.48 6.48 m 5.92 5.94

Table 3. Spectral distortion of generated parameter sequence using
frame context. The values represent mel-cepstrum distances [dB].

Phoneme HMM GPR-SE GPR-linear

a 5.67 5.51 5.52
i 6.01 5.64 5.63
u 6.10 5.94 5.94
e 5.33 5.17 5.16
o 5.90 5.63 5.64
k 5.09 5.05 5.05
t 4.13 4.17 4.17
n 5.73 5.81 5.81
s 4.74 4.57 4.57
m 5.48 5.50 5.50

4. EXPERIMENTS

4.1. Experimental conditions

Speech database used in experiments consisted of ATR phoneti-
cally balanced Japanese sentences recorded by one female speaker.
Speech signals were sampled at a rate of 16kHz. Spectral fea-
tures were extracted by STRAIGHT [9]. The 0-39th mel-cepstral
coefficients were used as target variables. Each dimension of the
mel-cepstral coefficients was modeled separately.

To examine the potential of GP regression, we chose 5 vowels
(/a/, /i/, /u/, /e/, /o/) and 5 consonants (/k/, /s/, /t/, /n/, /m/), which
were primary phonemes of Japanese and resulted in an articulatory
balanced set. Each phone was segmented using manually annotated
phone boundaries. The segments of training set were randomly cho-
sen up to 10,000 frames from 450 sentences for each phoneme. The
test 50 segments were randomly chosen from the remaining 53 sen-
tences. When the test segments were synthesized, the manually an-
notated boundaries of the original utterances were given.

The following experiments were performed separately for each
phoneme. The HMM-based speech synthesis was used as the con-
ventional method. Triphones were used for the context set for the
HMM training. The model topology was 5-state, left-to-right, no-
skip hidden semi-Markov model (HSMM). Each state had a single
Gaussian distribution with a diagonal covariance matrix and the fea-
ture vector included delta and delta-delta dynamic features.
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Fig. 3. Correlation coefficients between generated and original mel-
cepstral coefficients for phoneme /i/.

4.2. Results

4.2.1. Evaluation on position kernel

To measure the performance of GP regression for generating con-
tinuously changing acoustic features, an objective evaluation is per-
formed under a condition where only the position context is given as
the input. The kernel for Gaussian process regression corresponded
to Eq. (13). All target and explanatory variables are normalized
by their means and variances and the hyper-parameters were set to
lp = 1.0, σn = 1.0 by preliminary experimental results.

The spectral distortions of the generated parameter sequences
from both methods are shown in Table 2. In the table, GPR repre-
sents the proposed GP regression. The average mel-cepstral distance
was used as the measure of spectral distortion. From the table, it is
seen that GP regression has comparable performance with HMM in
the generation of continuously changing acoustic features.

4.2.2. Evaluation on frame context kernel

The proposed frame context kernels described in Sect. 3.2 were eval-
uated. We compared the sum of SE kernels and the linear ker-
nel as the phone context kernel. All target and explanatory vari-
ables were normalized and the hyper-parameters were given by lp =
lci = 1.0 (i = 1, . . . , 3M), σn = 1.0, and θci = 1.0/3M (i =
1, . . . , 3M) based on preliminary tests. In the case of HMM, tri-
phone HMM was used and decision-tree-based context clustering
was performed with a MDL criterion.

Table 3 shows the mel-cepstral distances between the generated
and original sequences. GPR-SE and GPR-linear employed the sum
of SE kernels and the linear kernel for phone context kernel, respec-
tively. It can be confirmed that phone context reduced the distortions
for all methods compared with the case without phone context of
Table 2. By comparing GPR with HMM, although there were only
small differences for the consonants except /s/, the mel-cepstral dis-
tance for the vowels using GPR-SE and GPR-linear decreased signif-
icantly without averaging of acoustic features by context-dependent
decision-tree clustering used in the HMM-based synthesis. It is also
found that the distances of GPR-SE and GPR-linear were compara-
ble. A possible reason is the insensibility of GP to the definition of
covariance functions.
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Fig. 4. Examples of generated 1st and 2nd mel-cepstral coefficients.

To take a more detailed look, the correlation coefficients be-
tween generated and original acoustic features for each mel-cepstral
dimension are plotted in Fig. 3. In the figure, the 0-20th dimensions
are shown because the correlation coefficients of higher dimensions
were too low to discuss. The results of GPR-SE and GPR-linear are
very similar and they are almost over-lapped. It is seen that the cor-
relations of GPR-SE and GPR-linear are higher than HMM in most
of the dimensions. Figure 4 shows the generated samples of the 1st
and 2nd mel-cepstral coefficients for multiple phone context. We
can find that GPR-linear could generate the sequences dependently
on phone context.

5. CONCLUSIONS

We have presented a framework of speech synthesis based on Gaus-
sian process regression and the frame context kernel that represents
the similarity of two frame contexts for Gaussian processes. The ex-
periments using a small data set of primary phonemes showed that
the proposed method could effectively model the spectral features.
For the future work, since the proposed model is currently limited in
phone-unit information, we have to expand the model unit to the sen-
tence and incorporate prosodic information for the practical use for
text-to-speech. Also since the proposed method needs phone bound-
ary annotations, the effect of the precision of manual or automatic
annotation has to be examined. Furthermore, there exists many use-
ful techniques in HMM-based acoustic modeling such as state align-
ment, therefore, they can be effectively utilized for the regression
model.
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