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ABSTRACT 
 
This paper proposes a maximum intelligibility (MI)-based 
close-loop speech synthesis framework to actively 
compensate for the distortion of background noises. In this 
framework, an extra environmental noise-sensing 
microphone and an automatic speech recognition (ASR) 
module are utilized to approximate a subjective 
intelligibility measure. The hidden Markov model-based 
speech synthesis system (HTS) is then online adjusted by 
using the MI-based model adaptation algorithm. 
Experimental results of two subjective listening tests in 
noisy environments show that the proposed approach 
obtains 64% of the votes in an A/B preference test and helps 
the participants reduce word dictation errors by relative 26% 
when compared to an HTS baseline. 
 

Index Terms— Speech synthesis, speech intelligibility, 
automatic speech recognition, minimum classification error 
 

1. INTRODUCTION 
 

Traditional text-to-speech (TTS) systems usually focus 
more on improving the naturalness and similarity of 
synthesized speech and less on intelligibility in noisy 
environments. However, in real-life TTS applications, 
background noise is often unavoidable. For example, in 
scenarios involving GPS car navigation or mobile phone 
screen reader for visually impaired people, there is often 
strong environmental noise. In particular, the output volume 
of a TTS system may be limited or even less than the 
background noise in these situations. 

To alleviate this problem, many approaches, such as 
spectral tilt [1-3], format enhancement [4], waveform 
companding [5], speech transformation [6] and source-filter 
model modification [7] are quite helpful. However, such 
methods are often open-loop or post-processing procedures. 
In other words, conventional TTS systems are deaf talkers 
because they are not aware of environmental noise. 

By contrast, humans are listening talkers and have the 
capacity to perceive background noise and adjust their 
voices to transmit messages efficiently. For example, the 

Lombard effect [8] is the involuntary tendency of speakers 
to increase their vocal efforts when speaking in loud noise to 
enhance the audibility of their voices. 

Therefore, this paper proposes a maximum intelligibility 
(MI)-based close-loop speech synthesis framework to mimic 
human ability and develop the capacity of a TTS system to 
actively compensate for the distortion of background noise. 
In brief, the proposed speech synthesis framework is 
equipped with an extra noise-sensing microphone and a 
speech recognizer to feedback speech intelligibility measure 
and is, therefore, a close-loop synthesis-by-analysis 
approach. And it should be possible to apply the proposed 
framework to simultaneously adjust the spectral, pitch and 
duration of synthesized speech [6-7]. However, in this paper, 
the proposed framework will be implemented to only 
modify the spectral parameters of HTS [9] phone models. 
 

2. MAXIMUM INTELLIGILITY SPECCH 
SYNTHESIS FRAMEWORK 

 
Fig. 1 shows the design of the proposed MI-based 
framework. The major differences from conventional TTS 
are (1) an extra environmental noise-sensing microphone; (2) 
an ASR module; (3) a subjective intelligibility measure; and 
(4) an MI-based online model adaptation algorithm. These 
modules are combined to simulate the functions of the 
human ear and brain. 
 

 
 

Fig. 1: Block diagram of the proposed maximum 
intelligibility-based close-loop speech synthesis framework 
for noisy environment. 
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The operation of this framework is is run in utterance-
by-utterance mode and could be described as follows: (1) 
background noise are online picked up by the microphone 
and mixed with a synthesized speech utterance; (2) the ASR 
module aligns (since we knew the input text) and recognizes 
the mixed noisy speech to determine a correct and a most 
competitive hypotheses, respectively; (3) a smooth 
recognition error rate function is computed based on both 
hypotheses to approximate the subjective intelligibility 
measure; (4) the HTS phone models used to synthesize the 
utterance are then adjusted according to the guide of the 
measurement, and the utterance is re-synthesized; finally (5) 
the entire procedure is iterated until observed speech 
intelligibility measure could not be further improved. 

It is worth noting that in this operation, only a subset of 
HTS phone models selected to synthesize the input sentence 
is involved in the adaptation procedure. Therefore, the 
additional computation time required is somehow acceptable. 
And the ASR module could be developed using (1) a large 
multi-speaker corpus for training a speaker-independent 
acoustic model, or (2) the same single-speaker corpus for 
training the HTS voice. These two cases could be treated as 
two types of subjective intelligibility feedback provided by 
other people or the speaker himself. 
 

3. MAXIMUM INTELLIGILITY ALGORITHM 
 
To simplify the computation complexity and directly adjust 
the spectral parameters of HTS phone models, the proposed 
algorithm is implemented in the mel-frequency cepstral 
coefficient (MFCC) domain, as illustrated in Fig. 2. 

 

 
 
Fig. 2: Block diagram of the implementing the proposed MI-
based approach to directly adjust the spectral parameters of 
HTS phone models. 

 
In the synthesis phase, the most suitable HTS phone 

model sequence for synthesizing an input sentence are 
chosen and concatenated to form a mixture mean vector 
sequence

1
[ ,..., ,..., ]

t T

HTS HTS HTS
q q qU µ µ µ= . The mean vector 

sequence is then transformed into an optimal output MFCC 
vector sequence 1[ ,..., ,..., ]t TC c c c=  using the parameter 
generation algorithm [10] as Eq. (1). 

 

 C = WTΣ−1W( )−1WTΣ−1U    (1) 

Here W and Σ  are the dynamic feature generation window 
function and the covariance matrices of HTS phone models. 

In the analysis phase, the output MFCC vector sequence 
C

 
is converted into a linear spectral vector sequence S  

using the inverse cosine transform (IDCT) and exponential 
function, i.e., 

  
S=exp IDCT C( )( ) . Then, the spectrum of 

observed background noise N  is online mixed with S  and 
transformed by using a logarithmic function, a discrete 
cosine transform (DCT) and the window function W  into a 
noisy feature vector sequence 1[ ,..., ,..., ]t TO o o o′ ′ ′ ′=  as Eq. (2) 
to reflect the distortion of environmental noise. 

 
  ′O =W DCT log S + N( )( )( )   (2) 
 
Then the ASR (with an acoustic model ASRΛ ) module 

aligns and recognizes the noisy MFCCs to generate a correct 
and a most competitive phone model state sequences q  and 
*q  with corresponding likelihood scores ( )g ⋅  and ( )*g ⋅  as 

Eq. (3) and (4) respectively. 
 

g ′O ,q;ΛASR( ) = logP ′O ,q |ΛASR( )

≈ −
′ot , j − µASR

qt , j( )2
2σ ASR

qt , jj=1

J

∑
t=1

T

∑
  (3) 

g* ′O ,q*;ΛASR( ) = logP ′O ,q* |ΛASR( )

≈ −
′ot , j − µASR

qt
*, j( )2

2σ ASR
qt
*, jj=1

J

∑
t=1

T

∑
 (4) 

 
Here we assume that a partitioned Gaussian density function 
is adopted, J  is the size of mean vector and ,t

ASR
q jσ  is the tq -

th state, j –th dimension variance of the Gaussian mixture. 

A misclassification function ( )D ⋅  is then defined using 
Eq. (5) and further transformed by using a zero-one sigmod 
function ( )L ⋅   (with parameters α  and β ) to approximate 
a smooth recognition error rate, as described in Eq. (6). 
 

D = −g ′O ,q;ΛASR( ) + g* ′O ,q*;ΛASR( )  (5) 

L D( ) = 1
1+ exp(−αD + β )

   (6) 

This smooth error rate function is finally used to 
approximate the subjective intelligibility measure. 

Thus, the parameters of the HTS phone models will be 
iteratively adjusted using the probabilistic gradient decent 
(GPD) [11-12] method, as defined in Eq. (7) (only the mean 
vectors are considered here). 
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 µi, j
HTS n +1( ) = µi, j

HTS n( )− ε 1− n
nmax

⎛
⎝⎜

⎞
⎠⎟
∂L D( )
∂µi, j

HTS  (7) 

 
Here, n  is the iteration index, ,

HTS
i jµ  is the i -th state, j –th 

dimension Gaussian mean, ε  is the learning step, and maxn   
is the maximum number of iterations. 

In more detail, the chain-rule is applied to the last term 
of Eq. (7): 

 
∂L D( )
∂µi, j

HTS = L D( )(1− L D( )) ∂D
∂µi, j

HTS   (8) 

∂D
∂µi, j

HTS = −
∂g ′O ,q;ΛASR( )

∂µi, j
HTS +

∂g* ′O ,q*;ΛASR( )
∂µi, j

HTS (9) 

 
∂g ′O ,q;ΛASR( )

∂µi, j
HTS =

′ot , j − µASR
i, j( )

σ ASR
i, j

∂ ′ot , j
∂µi, j

HTS
t&qt=i
∑  (10) 

 
∂ ′ot , j
∂µi, j

HTS =
∂ ′ot , j
∂ct , j

∂ct , j
∂µi, j

HTS    (11) 

Moreover, the term 
∂ ′ot , j
∂ct , j

 in Eq. (11) will be approximated 

by using a first-order Taylor expansion formulation. 
In summary, it could be found, especially from Eq. (10), 

that the mechanism of the proposed MI-based algorithm is 
to move the noisy MFCC, ,t jo′ , toward the correct reference 

ASR model mean, ,
ASR

i jµ  and away the most competitive 
one. In other words, it alleviates the distortions of MFCCs in 
the presence of background noises (will be further discussed 
in next section). Therefore the intelligibility of synthesized 
speech could be increased in noisy environments. 
 

4. EXPERIMENTAL RESULTS 
 
The performance of the proposed approach was evaluated 
and compared with a HTS baseline using a single female 
speaker Mandarin Chinese corpus released in the Blizzard 
Challenge 2009 [13] and NoiseX-92 [14] database. 

For all experiments, an HTS system similar to our 
NTUT entry [15] to the Blizzard Challenge 2009 was first 
established as the baseline system and then modified 
utterance-by-utterance by using the proposed MI-based 
approach. In all the following experiments, four different 
background noises, including babel, factory, tank and white, 
at 0, -5 and -10 dB segmental signal-to-noise ratio (SNR) 
conditions were tested. The ASR acoustic model used is 
same as the HTS one. The energies of all synthesized 
utterances were first normalized and then mixed with noises. 

Two subjective tests were evaluated: (1) A/B preference 
test on 480 news utterances and (2) word dictation test on 
480 semantically unpredictable sentences (SUS). Those 
utterances were selected from the Blizzard Challenge 2009 
test set. All subjective tests involved 24 native speakers of 
Mandarin Chinese with random assignment (20 news pairs 
and 20 SUS utterances per participant). 

For the A/B preference test, the participants were asked 
to compare two synthesized utterances generated by the 
HTS baseline and the proposed MI-based method (presented 
in random order) and choose the more intelligible one pair-
by-pair. For the word diction test, each participant had to 
transcribe 20 SUS sentences utterance-by-utterance. All 
listening tests were done in a quiet office room and 
equipped with a high quality circumaural headphone. 

First of all, Fig. 3 shows the spectrums of the two 
synthesized utterances of the same test sentence in the 
presence of strong (SNR=-10 dB) tank noise before and 
after applying the proposed MI-based algorithm, 
respectively. It could be found from this typical example 
that the proposed MI-based method automatically shifted 
most of the energy of the synthesized speech to higher 
frequency band to keep away from the lower frequency 
band tank engine noise. It also enhanced the formants of 
synthesized speech in higher frequency band. It therefore 
could mask the background noise better than the HTS 
baseline to alleviate the distortions of MFCCs (especially, 
the MFCC norm shrinking problem) in the presence of 
background noises. This may confirm the benefits in using 
the proposed MI-based method. 
 

 
Fig. 3: The spectrograms of the two synthesized utterances 
of the same test sentence in the presence of strong (SNR=-
10 dB) tank noise before (top panel) and after (bottom panel) 
applying the proposed MI-based algorithm (x- and y-axis 
are in second and Hz). 
 

Secondary, Fig. 4 (a)~(c) show the results of the 
subjective A/B preference test on the 4 different background 
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noises and three SNR (0, -5 and -10 dB) conditions. On 
average (over all SNRs and noise types), the proposed MI-
based approach obtained 64% of the votes. In other words, 
the participants believed that the synthesized utterances 
generated by the MI-based system were more intelligible 
than the HTS baseline ones. The only two exceptions are the 
cases of strong (-10 dB) babble and white noise. This may 
due to the larger spectrum overlapping between speech and 
babble and white background noises. 

 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 4: A/B preference test results of the proposed MI-based 
approach and the HTS baseline on four different background 
noises and three SNR conditions: average votes over (a) 0 
dB, (b) -5 dB and (c) -10 dB cases. 
 

Finally, Table 1 lists the results of the word dictation 
test on the 4 different background noises and three SNR (0, -
5 and -10 dB) conditions, showing that the proposed MI-
based approach helped participants to dictate more words 
correctly (word-error rate was reduced from 29.50% to 
21.86%, which is about 26% relative error rate reduction). 
These results may further confirm the superiority of the 
proposed MI-based method. 

Table 1: Word dictation test results of the proposed MI-
based approach and the HTS baseline on four different 
background noises and three SNR conditions: average word-
error rate (%) over 0, -5, and -10 dB SNR conditions. 
 

SNR=0 dB HTS baseline Proposed method 
Babble 18.18  9.09 
White 27.27 20.45 

Factory 20.45 13.63 
Tank 15.90 11.36 

Average 20.45 13.63 
 

SNR=-5 dB HTS baseline Proposed method 
Babble 27.27 22.27 
White 34.09 25.00 

Factory 27.27 18.18 
Tank 27.27 15.90 

Average 28.98 20.33 
 

SNR=-10 dB HTS baseline Proposed method 
Babble 40.90 34.09 
White 52.27 45.45 

Factory 36.36 27.27 
Tank 31.81 25.00 

Average 40.34 32.95 
 

5. RELATION TO PRIOR WORK 
 
The work presented here has focused on a close-loop 
synthesis-by-analysis algorithm that integrates both TTS and 
ASR modules. The works by other people usually consider 
only the TTS itself and are open-loop or post-processing 
approaches. For example, Valentini-Botinhao et al [2-3] 
apply Glimpse Proportion (GP) measure to modify the 
spectral envelope of synthesized speech during speech 
parameter generation phase. The work by Huang, et al [7] is 
based on speech-to-Lombard speech transformation in a 
post-processing stage. Suni et al [6] build a source-filter 
model (GlottHMM) and increase speaker’s vocal efforts by 
empirically adjusting related parameters. 

 
6. CONCLUSIONS 

 
The experimental results of two subjective listening tests 
show that the proposed MI-based method improved the 
intelligibility of the synthesized speech in various noisy 
environments.  Especially, it obtains 64% of the votes in an 
A/B preference test and helped the participants reduce word 
dictation errors by relative 26% error reduction when 
compared to the HTS baseline. In the future, the proposed 
framework will be extended to adjust the pitch and durations 
of synthesized speech. 
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