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ABSTRACT

This paper introduces a novel approach for complex cepstrum analy-

sis. Given initial estimates of complex cepstra and respective instants

of glottal closure, the method iteratively optimizes the complex cep-

strum and instants of glottal closure so that the mean squared error

between natural and reconstructed speech waveforms is minimized.

The proposed approach results in a more accurate speech represen-

tation based on the complex cepstrum, with no need of windowing

or phase unwrapping. Experimental results show that the proposed

method produces reconstructed speech with higher segmental signal-

to-noise ratio scores when compared with conventional methods of

complex cepstrum analysis. Because this approach can derive the

complex cepstrum at fixed periods, it can be applied to statistical

modeling in parametric speech synthesizers.

Index Terms— Complex cepstrum, cepstral analysis, speech

analysis, speech synthesis

1. INTRODUCTION

The speech production models that are usually utilized in most of

speech applications have mostly relied on a simplified parametric

model of speech production where a minimum-phase filter is excited

by a signal which consists of a mixture of pulses and noise. The

use of a minimum-phase filter, as an approximation for the effects

of the vocal tract and lip radiation of the human speech production

model, has been a legacy of the speech coding area where causality

is essential [1]. However, in speech coders the limitations of this

simplification can be compensated for by the excitation signals that

are usually derived through a frame-based analysis-by-synthesis pro-

cedure in the encoding part [2]. In other speech applications, such

as statistical parametric speech synthesis [3], causality is usually not

a requirement. In this case, the use of a more accurate speech model

could have a significant impact on the quality of the synthetic speech.

In order to address this problem, the use of the complex cepstrum

to incorporate glottal pulse information into statistical parametric

speech synthesis systems has been proposed [4]. From the perspec-

tive of the speech production mechanism in source-filter modeling,

the use of the complex cepstrum has an advantage over the com-

monly used cepstrum of minimum-phase cepstrum because it better

represents the mixed-phase characteristics of speech signals. The

complex cepstrum representation of the speech signal allows a non-

causal modeling of short-time speech segments, which is actually

observed in natural speech [1]. However, though theoretically ad-

vantageous, complex cepstrum analysis has certain drawbacks. The

speech signal must be windowed at the glottal closure instants (GCI).

The accuracy of the detection of the GCIs, as well as the type of win-

dow used for analysis, have a direct impact on the estimation of the

complex cepstrum [5, 6]. In addition, a phase unwrapping proce-

dure is usually performed to obtain the phase spectrum of the speech

segment as a continuous function of the frequency. A high-order

Fast Fourier Transform (FFT) often improves the performance of

this phase unwrapping process as well as avoiding aliasing, at a cost

of an increase of computational complexity [7].

This paper introduces a novel approach for complex cepstrum

analysis. The proposed method calculates the complex cepstrum in

a two-step optimization process. In the first one, given initial com-

plex cepstra the GCIs are updated. After that, the complex cepstra

are recalculated given the modified GCIs, the excitation signal, and

natural speech. Both procedures are conducted in a way that the

mean squared error between natural and reconstructed speech is min-

imized. Because the proposed method is based on time-varying fil-

tering of the excitation signal, no windowing is performed. Further-

more, because the optimization is conducted in the cepstral domain,

phase unwrapping is not necessary. Finally, the optimization is con-

ducted in a frame basis, resulting in frame-based complex cepstra,

which is more suitable for most of speech applications.

This paper is organized as follows: Section 2 gives an overview

of speech modeling using the complex cepstrum; Section 3 describes

the proposed complex cepstrum analysis method; Section 4 shows

some experiments, and the conclusions are in Section 5.

2. COMPLEX CEPSTRUM-BASED SPEECH MODELING

We assume a digital model in which speech is produced by

s(n) = h(n) ∗ e(n), (1)

where h(n) is a slowly varying impulse response representing the

effects of the glottal flow, vocal tract, and lip radiation [1]. The

excitation signal, e(n), is composed of delta pulses (amplitude one)

or white noise for voiced and unvoiced portions of the speech signal,

respectively.

The synthesis filter impulse response, h(n), can be derived from

the speech signal, s(n), through cepstral analysis. The cepstrum of

s(n) is given by [7]

ŝ(n) =
1

2π

Z π

−π

{ln |S (eω)| + θ(ω)} e
ωn

dω, (2)

S (eω) =

∞X

n=−∞

s(n)e−ωn = |S (eω)| eθ(ω)
, (3)

where |S (eω)| and θ(ω) are respectively the amplitude and phase

spectrum of s(n). ŝ(n) is by definition an infinite and non-causal

sequence. If pitch synchronous analysis with an appropriate window

to select two pitch periods is performed, then samples of ŝ(n) tend

to zero as n → ∞. In this case, if the signal e(n) is a delta pulse

or white noise sequence then a cepstral representation of h(n), here

defined as the complex cepstrum of s(n), can be given by ĥ(n) =
ŝ(n), so that |n| ≤ C, where C is the cepstral order.
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To synthesize speech, the complex cepstrum of s(n), ĥ(n), must

be converted into the impulse response h(n)

H (eω) = exp

CX

n=−C

ĥ(n)e−ωn
, (4)

h(n) =
1

2π

Z π

−π

H (eω) e
ωn

dω, (5)

where H (eω) is the complex spectrum of h(n). Finally, speech can

be reconstructed through (1).

Theoretically, the use of the complex cepstrum results in a

more accurate model of the speech signal when compared to the

minimum-phase synthesis filter approach, which discards the glottal

flow information contained in ĥ(n) [5]. However, complex cep-

strum analysis is very sensitive to the location of the analysis and

shape of window utilized [6, 8], as well as to the the performance

of the phase unwrapping algorithm used to estimate the continuous

phase response θ(ω)[9, 10].

3. PROPOSED COMPLEX CEPSTRUM ANALYSIS

To overcome the complex cepstrum analysis issues commented in

Section 2, the analysis-by-synthesis scheme of Fig. 1 is proposed.

The idea is that initial estimates for the complex cepstrum are opti-

mized so that the error between natural and reconstructed speech is

minimized. Here we consider only the voiced portions of the speech

signal, therefore the excitation signal, e(n), is composed solely of

pulses located at the glottal closure instants.
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Error
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of E
{

w2(n)
}
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Fig. 1. Illustration of the proposed process for complex cepstrum

analysis based on the minimum mean squared error.

The proposed complex cepstrum analysis approach is performed

in two steps. In the first one, the locations of the pulses of the ex-

citation signal, e(n), representing the GCIs, are optimized given the

complex cepstrum, ĥ(n). In the second step, the complex cepstrum

ĥ(n) at each frame of the speech signal is estimated given the exci-

tation signal, e(n), with updated pulse positions. Both procedures

are conducted in a way that the mean squared error (MSE) between

natural, s(n), and reconstructed speech, s̃(n), is minimized. In the

following sections these two procedures are described.

3.1. Pitch period onset position optimization

Pitch period onset position optimization is conducted by keeping

h(n) fixed while updating the amplitudes, {a0, . . . , aZ−1}, and lo-

cations, {p0, . . . , pZ−1}, of the pulses of e(n), where Z is the num-

ber of GCIs. During the process the mean power of the error signal,

E
˘
w2(n)

¯
, is minimized in a fashion that resembles the multi-pulse

excited speech coding algorithm [2].

By considering matrix notation, w(n) can be written as

w = s − s̃ = s − He, (6)

where

s =

"
0 · · · 0
| {z }

M
2

s (0) · · · s (N − 1) 0 · · · 0
| {z }

M
2

#⊤

, (7)

e =
ˆ
e (0) · · · e (N − 1)

˜⊤
, (8)

with s being a N + M -size vector whose elements are mostly sam-

ples of the speech signal, s(n), e contains samples of the excitation

signal e(n), M is the order of h(n), and is N the number of samples

of s(n). The (M + N) × N matrix H has the following shape

H =
ˆ
g0 · · · gN−1

˜
, (9)

gn =

»
0 · · · 0
| {z }

n

h⊤
n 0 · · · 0

| {z }

N−n−1

–⊤

, (10)

hn =
ˆ
hn

`
−M

2

´
· · · hn(M

2
)
˜⊤

, (11)

where hn contains the impulse response of H(z) at the n-th sample

position. Considering that the vector e has only Z non-zero samples

(voiced excitation), then s̃ can be written as

s̃ = He =

Z−1X

z=0

azgz, (12)

where {a0, . . . , aZ−1} are the amplitudes of the Z non-zero samples

of e(n). The mean squared error then becomes

ε =
1

N
w

⊤
w =

1

N

 

s −

Z−1X

z=0

azgz

!⊤ 

s −

Z−1X

z=0

azgz

!

. (13)

The z-th pulse amplitude âz which minimizes (13) can be found

by making ∂ε
∂az

= 0, which results in

âz =

g
⊤
z

0

B
@s −

Z−1X

i=0
i6=z

aigi

1

C
A

g⊤
z gz

. (14)

By substituting (14) into (13), and considering the terms which de-

pend only on the z-th pulse, the following expression for the best

position p̂z is obtained

p̂z = arg max
pz=pz−

∆p
2

,...,pz+∆p
2

»

gz⊤

„

s −
PZ−1

i=0
i6=z

aigi

«–2

g⊤
z gz

. (15)

The term ∆p is the range of samples in which the search for the best

position in the neighborhood of pz is conducted.

3.2. Complex cepstrum re-estimation

Because the impulse response h(n) is associated with each frame t

of the speech signal, the reconstructed speech vector s̃ can also be

written in matrix form as

s̃ =

T−1X

t=0

Atht, (16)
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...
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= Frame t − 1Frame tFrame t + 1
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M
2

samples
M
2

samples

At ht s̃t
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Fig. 2. Illustration of the product Atht. Shaded parts indicate pos-

sible non-zero samples.

where T is the number of frames in the sentence, and ht =
ˆ
ht

`
−M

2

´
· · · ht

`
M
2

´˜⊤
contains the synthesis filter impulse

response at the t-th frame of s(n). The (K +M)× (M +1) matrix

At is given by

At =
h

u− M
2

· · · u M
2

i

, (17)

um =

"

0 · · · 0
| {z }

M
2

+m

e⊤
t 0 · · · 0

| {z }

M
2

−m

#⊤

, (18)

et =

»
0 · · · 0
| {z }

tK

e (tK) · · · e ((t + 1)K − 1) 0 · · · 0
| {z }

N−(t+1)K

–⊤

, (19)

where et is the excitation vector where only samples belonging to

the t-th frame are non-zero, and K is the number of samples per

frame. Fig. 2 gives and illustration of the matrix product Atht. By

considering (16), the MSE can be written as

ε =
1

N

 

s −

T−1X

t=0

Atht

!⊤ 

s −

T−1X

t=0

Atht

!

. (20)

The optimization must be performed in the cepstral domain [11].

The relationship between the impulse response vector, ht, and its

corresponding complex cepstrum vector,

ĥt =
ˆ
ĥt(−C) · · · ĥt(C)

˜⊤
, can be written as

ht = f
“

ĥt

”

=
1

2L + 1
D2 exp

“

D1ĥt

”

, (21)

where exp (·) means a matrix formed by taking the exponential of

each element of the matrix argument, and L is the number of one-

sided sampled frequencies in the spectral domain. The elements of

the (2L + 1) × (2C + 1) matrix D1, and the (M + 1) × (2L + 1)
matrix D2 are given respectively by

D1(i, j) =e
−ωij

, −L ≤ i ≤ L, − C ≤ j ≤ C (22)

D2(i, j) =e
ωji

, −
M

2
≤ i ≤

M

2
, − L ≤ j ≤ L (23)

where {ω−L, . . . , ωL} are the sampled frequencies in the spectrum

domain, with ω0 = 0, ωL = π, and ω−l = −ωl. By substitut-

ing (21) into (20) a cost function relating the MSE with ĥt can be

obtained

ε
“

ĥt

”

=
1

N

h

r
⊤
t rt − 2rtAtf

“

ĥt

”

+ f
“

ĥ
⊤
t

”

A
⊤
t Atf

“

ĥt

”i

,

(24)

where

rt = s −

T−1X

j=0,j 6=t

Ajf
“

ĥj

”

. (25)

Table 1. Algorithm for complex cepstrum analysis based on the

minimum mean squared error.
Initialization
1) Initialize {p0, . . . , pZ−1} as the instants used for initial
cepstrum calculation
2) Make az = 1, 0 ≤ z ≤ Z − 1
3) Get initial estimates of the complex cepstrum for each

frame:
n

ĥ
(0)
0 , . . . , ĥ

(0)
T−1

o

Recursion
1) For each pulse position {p0, . . . , pZ−1}

1.1) Determine the best position p̂z using (15)
1.2) Update the optimal amplitude âz using (14)

2) For each pulse amplitude {a0, . . . , aZ−1}
2.1) Make az = 0 if az < 0, or az = 1 if az > 0

3) For each frame {t = 0, . . . , T − 1}
3.1) For i = 1, 2, 3, . . .

3.1.1) Estimate ĥ
(i+1)
t according to (26)

3.1.2) Stop if 10 log10

 

ε
“

ĥ
(i+1)
t

”

ε
“

ĥ
(i)
t

”

!

≥ 0 dB

4) Stop of the SNRseg between s(n) and s̃(n) is satisfying

Since the relationship between cepstrum and impulse response,

ht = f
“

ĥt

”

, is non-linear, a gradient method [12] is utilized to

optimize the complex cepstrum. Accordingly, a new estimation for

the complex cepstrum can be obtained through

ĥ
(i+1)
t = ĥ

(i)
t − γ∇̄

ĥt
ε
“

ĥt

”

, (26)

where ∇̄
ĥt

ε
“

ĥt

”

=
∇

ĥt
ε(ĥt)

‚

‚

‚∇
ĥt

ε(ĥt)
‚

‚

‚

is the normalized gradient of

ε
“

ĥt

”

with respect to ĥt, γ is a convergence factor, and i is an

iteration index. The gradient vector is given by

∇
ĥt

ε
“

ĥt

”

= −
2

N(2L + 1)
D

⊤
1 diag

“

exp
“

D1ĥt

””

D
⊤
2

A
⊤
t

h

rt − Atf
“

ĥt

”i

, (27)

where diag(·) means a diagonal matrix formed with the elements of

the argument vector.

3.3. Iterative algorithm

Table 1 shows an algorithm that implements the proposed complex

cepstrum analysis. Initial estimates of the complex cepstrum can

be derived by conventional complex cepstrum analysis. The respec-

tive analysis instants can be used to represent the pulse positions

{p0, . . . , pZ−1}. Estimates of initial frame-based complex cepstra

can be taken in several ways. One form is to consider each ĥt vector

equal to the complex cepstrum vector obtained in the GCI immedi-

ately before frame t. Other possible ways are interpolation of pitch-

synchronous cepstra over the frame, or interpolation of amplitude

and phase spectra [4].

During the pulse optimization process, negative amplitudes

az < 0 are strong indicators of false GCI detection. To solve this

first problem, amplitudes are set to zero az = 0 whenever the al-

gorithm finds negative amplitudes (recursive Step 2). Naturally, for

this solution to make sense, it is assumed that there is no polarity

reversal in the initial complex cepstra estimates [7]. In the same step,

positive amplitudes are set to one. This is done to force the gain

information to be captured by the cepstrum rather than the excitation

signal, and it is useful in applications where the excitation signal has

to be constructed basically from F0 information, as in [13].
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Table 2. Results of the optimization process for different cor-

pora. APDPM stands for average percentage of deleted pitch marks.

SNRseg values are in dB and represent the average of the sentences.

A, H, N and S mean respectively angry, happy, neutral and sad.
FZL-A FZL-H FZL-N FZL-S FLH

Initial SNRseg 2.0 2.9 2.4 2.6 4.5
APDPM 3.0 3.6 2.8 8.5 3.4
Final SNRseg 7.2 7.6 6.3 6.6 10.3

FSP-A FSP-H FSP-N FSP-S MGT

Initial SNRseg 1.7 2.6 0.9 3.3 1.3
APDPM 2.1 1.7 26.7 19.7 9.3
Final SNRseg 6.2 7.6 4.8 7.7 7.5

4. EXPERIMENTS

4.1. Speech modeling properties

Experiments of speech analysis and reconstruction using the pro-

posed complex cepstrum analysis method were conducted on 500

utterances, divided as follows: 200 utterances from a female British

English speaker (FZL), with 50 utterances spoken in each one the

following emotions: angry, happy, neutral, sad; 200 utterances from

a female American English speaker (FSP), also with 50 utterances

per emotion: angry, happy, neutral, sad; 50 utterances from another

female American English speaker (FLH) in neutral style; and 50

sentences from a male American English speaker (MGT) in neu-

tral style. For FZL and FSP, pitch marks were extracted using the

Entropic Signal Processing Software [14]. For FLH and MGT pitch

marks were extracted by a proprietary tool. Fundamental frequencies

were also extracted using the Entropic Signal Processing Software.

Initial cepstra were obtained as in [4]. Cepstrum and filter orders

were C = 512 and M = 512, respectively. The algorithm shown in

Table 1 was utilized to derive the final complex cepstra. The maxi-

mum number of iterations and convergence factor for complex cep-

strum optimization (Step 3) were γ = 0.1 and 50, respectively. Two

recursive iterations were conducted for each sentence. Speech was

reconstructed by converting the cepstra into synthesis filter impulse

responses according to (21). The corresponding GCIs were used to

determine the positions of the unit pulses of the excitation signal,

e(n). For the frames where F0 = 0, samples of e(n) were taken

from a white noise generator. Speech was reconstructed through (1).

Table 2 shows the average SNRseg (average of the SNRseg from

all the sentences of a given corpus) and average percentage of GCIs

eliminated per sentence in the process. Speakers FZL and FSP had

the lowest gains in terms of SNRseg. This could be due to inaccurate

initial pitch marks for FSP (the number of deleted pitch marks is high

when compared with the other data), and high F0 excursions for FZL

(from 80 to 500 Hz). Fig 3 shows a high pitched portion of natural

speech of FZL-neutral, and its synthesized versions using initial and

final cepstra. It can be seen that the proposed method corrects visible

distortions on the synthesized speech due to the high F0.

4.2. Experiments with statistical parametric speech synthesis

To test the method in statistical parametric synthesis [3], 759 FZL-

happy utterances, with a rather intense emotional style, and 1071

FZL-neutral utterances were selected. For these corpora two dif-

ferent synthesizers were constructed: one with the initial complex

cepstrum, and another with the final complex cepstrum. For statis-

tical modeling, each complex cepstrum set was decomposed into its

minimum-phase and all-pass components, and the all-pass compo-

nent was transformed into phase features, as shown in [4].

The resulting 512-order minimum-phase component and 512-

dimension phase parameters were warped onto 39 mel cepstral
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Fig. 3. Examples of waveforms. Top: natural speech; middle:

speech reconstructed with the initial cepstra; bottom: speech recon-

structed with the final cepstra.

Table 3. Subjects’ average preferences. Initial cepstra are extracted

as in [4]. No phase means system Ini. Cep. without phase features.
Corpus No phase Ini. cep. Fin. cep. No pref. p-value

FZL-happy 37.7 48.3 14.0 0.004
FZL-happy 39.3 51.9 8.7 0.091
FZL-neutral 43.7 47.5 8.8 0.177
FZL-neutral 44.3 47.3 8.4 0.229

coefficients and 19 mel phase parameters, respectively [15]. Each

observation vector had the following streams: (1) mel cepstrum

plus delta and delta-delta; (2,3,4) logarithm of the fundamental fre-

quency, delta, and delta-delta, respectively; (5) 22 band-aperiodicity

parameters, calculated as described in [4], plus delta and delta-delta;

(6) phase parameters, plus delta and delta-delta. The final system

observation vectors were used to train five-state no-skip left-to-right

HSMMs [3]. Stream weight was set to zero for the band-aperiodicity

and phase parameter streams. At synthesis time, generated mel cep-

strum, fundamental frequency, band-aperiodicity and mel phase

parameters were used to synthesize speech according to [4].

Fifty test sentences were synthesized. For the synthesizer with

initial cepstra, the sentences were also synthesized without the phase

parameter to simulate the system described in [13]. The test samples

were submitted to the Amazon Mechanical Turk. On average, the

opinions of 75 listeners were used to calculate the average prefer-

ences in each test shown in Table 3. Methods to detect cheating were

used during the analysis of the results. Note that the addition of the

phase parameter already results in improvement for the baseline sys-

tem with initial cepstra. The proposed system with optimized cepstra

achieved higher preference rates. Important to note the impact of the

optimized cepstrum on FZL-happy, which is usually difficult to be

processed due to its large F0 excursions.

5. CONCLUSION

A method for complex cepstrum analysis based on the minimum

mean squared error between natural and reconstructed speech has

been proposed. The approach searches for the best analysis instants

given initial estimates of the complex cepstrum, followed by com-

plex cepstrum re-estimation given the updated analysis locations.

This method produces closer to natural reconstructed speech when

compared to conventional complex cepstrum analysis methods. Ex-

periments with statistical parametric synthesis also show that the re-

sulting complex cepstrum produces better quality.
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