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ABSTRACT 

 

For multi-channel TTS applications, e.g. in a cloud service, it is 

highly desirable that high quality speech can be synthesized in low 

complexity. In this paper, we propose a fast table lookup based, 

statistical model driven approach to non-uniform unit selection 

TTS for that purpose. In TTS training, the voice font of all 

waveform segments is organized as a Gaussian kernel coded hash 

table and a table for storing quantized costs of all possible 

concatenation segment pairs. In synthesis, waveform segments 

with non-uniform lengths are first selected to construct a candidate 

lattice by looking up the Gaussian kernel coded hash table, and the 

best path is searched in the lattice by minimizing the accumulated 

concatenation scores, which are retrieved from the quantization 

table for possible concatenations. Experimental results show that 

the new approach can significantly reduce the search complexity 

while keep a high TTS voice quality. 

 

Index Terms— statistical parametric synthesis, unit-selection 

based TTS, Hybrid TTS, voice font quantization, fast TTS  

 

1. INTRODUCTION 

 

In past few years, hybrid approaches to TTS [1-7] by combining 

parametric HMM and waveform unit selection have shown they 

can yield high synthesized voice quality in both naturalness and 

intelligibility. HMM, a parametric source-filter based model can 

yield smooth and highly intelligible TTS speech but still perceived 

as a traditional vocoder with a slight machine flavor [8]. On the 

other hand, the waveform concatenation-based unit selection TTS 

can yield fairly natural sounding speech but produce occasional 

undesirable concatenation glitches. The hybrid approaches, which 

use HMM to guide the unit selection process to minimize the 

spectral, pitch and duration mismatch and concatenation 

distortions, tend to preserve the advantages of both approaches [5]. 

A probabilistic criterion of likelihood [1], Kullback-Leibler 

divergence (KLD) between target and candidate phone-based 

HMMs [2] and the generated parameter trajectories from HMMs 

[3,4] are used to select the potential waveform unit candidates. An 

in-depth review has been given by Zen et al [5]. The unit selection 

oriented approach can also improve the quality of HMM-based 

synthesis by employing stable regions of natural units [6] or using 

the optimal rich context model sequences [7] to alleviate the sound 

muffling effects caused by overly smoothed HMM parameters due 

to the “averaging” process in both HMM training and synthesis [9] 

by maximizing the likelihood. 

Recently, we proposed a trajectory tiling based approach to 

high quality speech synthesis [4], which uses the trajectories 

generated by the HMM to guide unit selection for finding the best 

match in spectrum, pitch and duration. The approach can render 

natural sounding speech without sacrificing the intrinsic high 

intelligibility of the HMM-based TTS, and has been confirmed in 

the Blizzard Challenge 2010 [4,21]. However, the computational 

complexity of the proposed approach is still very high, due to the 

parameter generation, distance calculation between guided 

trajectories and candidate trajectories, and maximization of the 

normalized cross-correlations (NCCs) for searching the best path 

in lattice and the optimal concatenation time instants [10]. In 

sever-based applications like cloud services, a TTS engine needs to 

manage multi-thread, multi-voice for multi-access with low 

complexity but without voice quality degradation. In this paper, we 

propose a fast, statistical model driven approach to non-uniform 

unit selection based TTS. It can achieve very fast synthesis by 

simple table lookup without degrading the synthesized voice 

quality.   

 

2. OUR NEW APPROACH 

 

The block diagram of our new TTS is shown in Fig. 1. In training, 

the speech signal is converted to a sequence of observed feature 

vectors and then modeled as a sequence of HMM states. Each state 

of HMMs is parameterized as a Gaussian distribution over the 

possible output. The entire speech database is coded by the 

mapped Gaussian kernels. In synthesis, input text is converted first 

into a sequence of contextual labels by the text analysis. The 

corresponding contextual state sequence is then generated. The 

waveform segment candidates are obtained from Gaussian kernel 

coded database. With the concatenation score table, the best 

candidate path is searched by the Viterbi algorithm to generate the 

final output speech.   

 

2.1. Statistical Training of HMMs 

 

Spectral envelope, fundamental frequency, and duration are 

modeled simultaneously by the corresponding HMMs first in 

maximum likelihood (ML) sense [11] and then refined to reduce 

synthesis errors of training sentence trajectories in the minimum 

generation error (MGE) sense [12]. Context-dependent phone 

models are used to capture the phonetic and prosody co-

articulation phenomena. State typing based on decision-tree is used 

to alleviate insufficient training data problem. After HMMs 

training, the whole training data are firstly force-aligned by ML 
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criterion at the state level and then each state boundary is refined 

by the MGE criterion. 
 

 
 

Fig. 1 Block diagram of the new table lookup, statistical model 

driven, non-uniform unit selection TTS. 

 

2.2. Gaussian Kernel Coded Speech Database 

 

In HMM training, stream-dependent models are built to cluster the 

spectral and pitch features into separated decision trees. The leaf 

nodes of decision three are used to quantize the force-aligned 

speech database. Each state-length waveform segment is coded by 

a tied spectral state ID and a tied F0 state ID. We also build up 

tied-sated distance tables for all spectral and pitch states. Kullback-

Leibler Divergence (KLD) [18] is used to measure the similarity 

between two states of HMMs [19]. KLD is an information-

theoretic measure of (dis)similarity between two probability 

distributions. For two given distributions, P and Q, of continuous 

random variables, the symmetric form of KLD between P and Q is: 
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where p and q denote the probability density function (pdf) of P 

and Q. The spectral state has a multivariate single Gaussian 

distribution. The KLD between two spectral states has a closed 

form: 
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where μ and Σ are the corresponding mean vector and covariance 

matrix, respectively. Pitch features are modeled by an MSD-HMM, 

where two, discrete and continuous, probability spaces are 

modeled for unvoiced regions and voiced F0 contours [13], 

respectively. The upper bound of KLD between two states of 

MSD-HMMs can be derived as [14]: 
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where w0 and w1 are the prior probabilities of unvoiced and voiced 

subspaces, respectively. 

With a Gaussian kernel coded database, we can construct a 

hash table to reduce search complexity via a quick table lookup. 

The key of hash table is the tied state ID and the corresponding 

value is the waveform segment index. Minimum description length 

(MDL) criterion [15] for balancing model complexity and training 

data size is used as a stop criterion for state clustering in growing 

the decision tree. The number of waveform segments clustered in 

each leaf node of the decision tree varies. In order to have adequate 

number of segment candidates in searching a best path in candidate 

lattice for the final concatenation, when the number of values for 

each hash key is less than a preset threshold, we group wave 

segments of other leaf node(s), which are similar, into the same 

hash key. Accordingly, the value of each hash key is associated 

with a distance, which indicates the dis-similarity of waveform 

segment to tied-state ID (key). A schematic illustration of hash 

table and waveform segment index table is shown in Fig. 2. 
 

ID SentNo StartFrame Duration LspState F0State

0 1 0 18SIL_lsp_s2_58 logF0_s2_434

1 1 18 1SIL_lsp_s3_28 logF0_s3_230

… … … … … …

50 1 100 2a_lsp_s2_1 logF0_s2_434

… … … … … …

190 2 230 12a_lsp_s2_1 logF0_s2_434

191 3 12 3a_lsp_s2_2 logF0_s2_856

… … … … … …

695 4 107 4a_lsp_s2_2 logF0_s2_856

… … … … … …

key value1 value2 value3 value4

a_lsp_s2_1 50 , 0 190, 0 191, 0.1 …

a_lsp_s2_2 191,0 695,0 … …

…

 
 

Fig. 2 A schematic illustration of hash table and waveform 

segment index table. 

 

2.3. Non-uniform Segment Selection 

 

In synthesis phase, tied state sequence is generated by traversing 

the decision trees and the duration of each state is obtained from a 

duration model for given input text. Since pitch and spectral 

features are clustered separately by decision trees, the pitch and 

spectral state sequences are different. The whole training waveform 

corpus is already coded by tied state ID, as described in section 2.2. 

We use generated spectral tied-state ID sequence to search corpus. 

The matched waveform segments can be in length of one, two or 

multiple states, which depend upon the contextual matches 

between the state ID sequence in training sentence and that in a 

testing sentence. The corresponding waveform segments with 

different lengths are used to construct a candidate lattice.   

Segment candidate lattice is first pruned by duration and then 

by the target score. Duration is used to prune the candidate 

segment whose duration is very different from the predicted 

duration. Target score is defined as: 
 

3/))()()(( dsptar dNdNdND                 (4) 

 

where N(dp), N(ds) and N(dd) are normalized KLD score of pitch, 

spectrum and duration between target state and candidate state. A 

function is adopted to normalize the KLD score to 0~1. Lattice 

pruning is candidate length dependent, i.e. the segment candidates 

with different lengths are pruned individually according to a preset 

number of surviving hypotheses. 
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A compact lattice with non-uniform segment candidates is 

constructed after pruning. The best path is searched in the lattice 

by the score as: 
 

contar DwDD                                     (5) 
 

where Dtar  is the target score defined in Eq. 4, Dcon  is the 

concatenation score retrieved from concatenation score table, and 

w is the weight to compensate for the dynamic range difference 

between target and concatenation scores. In order to keep original 

continuity in waveform segment, we use non-uniform segment 

candidates to construct lattice. However, it will result in the best 

path searching in favor of candidates with longer durations. To 

balance this bias, we search the best path in any possible state 

boundary by dividing longer units into state-level units.  Fig. 3 

shows an example of the best path searching in a pruned lattice for 

given input text. The waveform segments in the best path are 

concatenated together at the optimal concatenation points by a 

triangular window, cross-faded in the time domain. The optimal 

concatenation points are obtained by maximizing the Normalized 

Cross-Correlation (NCC) between two windows located at the end 

of former segment and the start of latter segment. 
 

 
 

Fig. 3 An example of the best path searching in a pruned lattice for 

given input text. (Waveforms in different colors indicate non-

contiguous waveform segments.) 

 

2.4. Concatenation Score Table Construction 

 

As mentioned in Section 2.3, we retrieve the concatenation score 

in a table instead of calculating it on the fly. Since NCC can not 

meet the positive, semi-definitive requirement of clustering, we use 

KLD between two normalized power spectra, sp and sq at the 

concatenation boundaries of segment p and segment q to measure 

concatenation discontinuity [3, 20]. It is defined as, 
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We cluster the normalized power spectra of all possible 

concatenation segment boundaries by the criterion shown in Eq. 6, 

where the half of FFT power spectra (M=128 for 16ms frame 

length) is used. The Bregman divergence, in which KLD is 

included, is investigated as objective function for clustering and 

proved that it shows a monotonical non-increase of the objective 

function [22]. The algorithm of clustering is shown in Fig.4. 

After clustering, we build up a KLD table for each cluster 

centroid pair. The KLD between two spectra sp and sq can be 

approximately evaluated by 
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where 
ip Cs   and 

jq Cs  , i, j, k are codebook and fragment 

indices. 
 

1. Initialize: S is spectrum set, sn is the n-th spectrum. evenly 

divide the spectrum into K fragments; Lk indicates the 

length of k-th  fragment, set a splitting threshold   

2. For k = 1 to K;  

 

2.1 )(kC  is the set of codes for k-th  fragment; 

          Initialize:  )(kC ø 

2.2 For n=1 to N 

          If there doesn’t exist  )(kCc  such that ),(
)(

csd
k

n
, 

          then }{)()(
)(k

nskCkC   

2.3 Adjust each Lk  and   according to the size of 

codebook )(kC  

3. Assign each )(k
ns  to the closest cluster center and do 

iteration till total clustering distortion is less than a 

threshold  ρ or each )(kC  meets the requirement 
 

Fig. 4 Fragment-based clustering for the normalized power spectra 

of all possible concatenation segment boundaries 

 

3. EXPERIMENTS AND RESULTS 

 

A phonetically and prosodically rich speech corpus, which consists 

of a female speaker’s 9 hours recordings in Mandarin Chinese, is 

used in our experiments. Speech signals are sampled at 16kHz. The 

spectral analysis is performed by a 25-ms Hamming window and 

shifted every 5-ms. Spectral envelopes are estimated by 

STRAIGHT [16] and LPC analysis and ultimately represented by 

40th order LSPs and their dynamic counterparts. F0 is extracted on 

a short-time basis by applying the robust algorithm for pitch 

tracking (RAPT) [17]. Five-state, left-to-right HMM phone models, 

where each state is modeled with a single Gaussian, diagonal 

covariance output distribution, are adopted. Rich phonetic and 

prosodic contexts are used as the question set in growing the 

decision trees. They include tones and breaks, quin-phone context, 

POS on contextual tri-word, positions of phone, syllable and word 

in phrase and sentence, and the length of syllable, word and phrase 

in number of phone, syllable and word. HMMs are firstly trained 

in ML sense and then refined in MGE sense. After HMM training, 

the whole training data are first force-aligned at the state level and 

then each state boundary is refined by the MGE criterion. The 

numbers of states for pitch, spectrum and duration are given in 

Table 1. The normalized power spectra of all possible 

concatenation segment boundaries are grouping into ~ 10,000 

clusters. We set K=10 for total number of fragments. The 

dimensions of subvectors or fragments, which are automatically 

obtained in the clustering procedure, are {13, 10, 11, 11, 12, 13, 12, 

12, 13, 21}. 

 

Table 1. The numbers of states for pitch, spectrum and duration. 
 

 Pitch Spectrum Duration 

No. of State 14,328 7,393 1,249 

 

50 sentences are used for developing set to tune the weight for 

target score in Eq. 5 and another 50 sentences are employed to test 
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the performance of our proposed method. The pruned lattice is 

constructed by the method mentioned in Section 2.3. The 

histogram of segment length in number of state in pruned lattice is 

shown in Fig. 5. 150 sentences synthesized by three systems are 

used for evaluation. The configurations of three systems are listed 

as following, 

a) Baseline system: our previous HMM trajectory tiling 

based TTS [4]. 

b) New system A:  it employs Gaussian kernel coded 

speech database, instead of generated trajectories from 

HMM in baseline system, to search the waveform 

segment candidates for constructing a lattice. The 

concatenation score in Eq. 5, which is used for best path 

search in lattice, is still NCC calculated in the real time. 

c) New system B:  it uses the concatenation score, which is 

retrieved from a table, together with the target score, in 

searching the best path in the lattice, which is the only 

difference from system A.  

 

 
Fig. 5 Segment length in # of state in pruned lattice. 

 

Both objective and subjective measures are used to evaluate the 

synthesis performance. Objective measures are target score for 

evaluating the distance from predicted state, segment length in 

number of state and average NCC per frame for measuring the 

smoothness or continuity of the concatenated waveform segment 

sequence. The subjective measure is an AB preference test between 

speech sentence pairs synthesized by two selected systems, i.e., 

between the baseline and the improved system. Ten native speakers 

participated in the subjective tests. The preference test demands a 

choice among a) former is better; b) latter is better; c) can’t tell 

difference or can’t tell which one is better; for each paired test 

stimuli in its naturalness and intelligibility. The order of stimuli 

presentation of the sentences is randomized.  

 

 
 

Fig. 6 The results of AB preference test for baseline and new 

proposed systems A and B. 

 

The results of objective and subjective measures are shown in 

Table 2 and Fig. 6, respectively. The blank cells in Table 2 mean 

that the scores can be incomparable due to different criteria in 

baseline and new systems. The preference ratios are 26% vs. 24% 

and 24% vs. 18% for baseline and new system A and for system A 

and system B, respectively. It indicates that the new approach can 

essentially maintain the synthesis speech quality, in comparison 

with the baseline system. On the other hand, the computational 

complexity for the modules of the baseline and new systems A and 

B are listed in Table 3, where indicates the complexity of our new 

systems is significantly reduced. 

 

Table 2. The results of objective measures for baseline and new 

systems A and B.  
 

 F0 LSP Duration Seg Len NCC 

Baseline    6.9 0.98 

New A 0.78 0.99 0.93 6.5 0.97 

New B 0.82 0.99 0.92 6.2 0.95 

 

Table 3. Computational complexities for the modules in our 

baseline and the two new systems A and B. 
 

 Baseline New A New B 

Trajectory 

Generation 

O(TML) None none 

Lattice 

Construction 

O(TMS) hash table  

lookup 

hash table 

lookup  

Best Path  

Search 

O(KH2 NlogN) O(KH2 NlogN) O(KH2) 

 

* T: # of frames, M: feature dimension, L: delta feature window 

size, N: NCC window length, S: # of candidates per concatenation 

unit in corpus, K: # of concatenation points, H: # of candidates per 

concatenation unit in pruned lattice. 

 

4. CONCLUSIONS 

 

We propose a fast table lookup based, statistical model driven 

approach to non-uniform unit selection TTS. In training, the voice 

font of all waveform segments is structured as a Gaussian kernel 

coded hash table and a quantization table to pre-store 

concatenation costs between possible paired segments. In 

synthesis, the waveform segments with non-uniform length is first 

selected to construct a candidate lattice by looking up the Gaussian 

kernel coded hash table, and the best path is searched in the lattice 

by minimizing the accumulated concatenation scores, which are 

retrieved from the pre-computed quantization table. Experimental 

results show that the new approach can significantly reduce the 

search complexity without degrading synthesized TTS voice 

quality. (Demos for TTS: http://research.microsoft.com/en-

us/projects/newfasttts/default.aspx ) 

 

5. RELATION TO PRIOR WORK 

 

The work presented concentrates on how to construct a voice font 

as a search-efficient, Gaussian kernel coded hash table for all 

waveform segments and a quantization table for all possible pairs 

of concatenations. The approach significantly reduces the 

computational complexity in the backend of TTS speech synthesis 

for multi-channel, real time applications. The work by Ling and 

Wang [1] employs phone level unit selection by combing 

likelihood and KLD, Yan et al [2] uses rich-context (untied) model 

to represent the units parametrically and KLD between these 

models for unit selection, and Hirai et al [3] and Qian et al [4] used 

parameter trajectories to guide the unit selection process. While 

our present work proposes an approach to use tied state to quantize 

all waveform units and KLD between the predicted state and tied 

state for unit selection. In addition, quantized KLD lookup table of 

normalized power spectra is used to measure concatenation 

distortion instead of calculating them on the fly [3]. 
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