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ABSTRACT 

Certain speech modifications, such as changes in foreign/regional 

accents or articulatory styles, are performed more effectively in the 

articulatory domain than in the acoustic domain. Though 

measuring articulators is cumbersome, articulatory parameters may 

be estimated from acoustics through inversion. In this paper, we 

study the impact on synthesis quality when articulators predicted 

from acoustics are used in articulatory synthesis. For this purpose, 

we trained a GMM articulatory synthesizer and drove it with 

articulators predicted with an RBF-based inversion model. Using 

inverted instead of measured articulators degraded synthesis 

quality, as measured through Mel cepstral distortion and subjective 

tests. However, retraining the synthesizer with predicted 

articulators not only reversed the effect of errors introduced during 

inversion but also improved synthesis quality relative to using 

measured articulators. These results suggest that inverted 

articulators do not compromise synthesis quality, and open up the 

possibility of performing speech modification in the articulatory 

domain through inversion. 

Index terms– articulatory synthesis, articulatory inversion, 

speech modification, Maeda parameters 

1. INTRODUCTION 

In order to modify certain characteristics of speech such as 

duration, pitch, speaker identity and articulation styles, we must 

first decouple them from other factors that make up the speech 

signal. Some of these characteristics, such as duration and pitch, 

are easily extracted in the acoustic domain.  Others, such as 

regional/foreign accents and articulation styles, are more 

challenging since speaker-dependent and linguistic information 

interact in complex ways when analyzing the formant structure of 

the utterance. These two sources of information, however, may be 

easily decoupled in articulatory space [1].  For this reason, 

researchers have incorporated articulatory parameters in a variety 

of speech modification problems such as voice transformation [2], 

foreign accent conversion [3], and flexible text-to-speech synthesis 

[4]. 

However, current technologies that collect articulatory 

parameters are impractical outside laboratory settings. These 

technologies, such as X-Ray Microbeam, ultrasound, 

electropalatography, and, electromagnetic articulography (EMA) 

are invasive, and in the case of X-ray microbeam also dangerous. 

In order to avoid the cumbersome process of measuring 

articulatory parameters, researchers have proposed several methods 

to invert articulatory parameters from the acoustic signal [5-8]. 

Inverted articulatory features have been found useful for speech 

recognition [9-11], but their effectiveness in speech modification is 

not well studied.  

As a first step toward using articulatory inversion in speech 

modification, this article investigates the impact on synthesis 

quality of replacing measured articulators with predictions from 

articulatory inversion. Namely, we predict Maeda articulatory 

features [12, 13] from speech acoustics (MFCCs) using an RBF-

based inversion method [5]. Then, we use a GMM-based 

articulatory synthesizer [6] to synthesize speech from either 

measured or predicted articulators. Finally, we compare these two 

types of synthesis using objective measures (Mel cepstral 

distortion) and subjective evaluation (listening tests).  

Relation to prior work. Our work is most related to previous 

studies that incorporated articulatory parameters in speech 

synthesis and speech modification [3, 4, 6].  These previous 

studies, however, used directly measured articulatory parameters –

see section 2 for a detailed discussion.  In contrast, our study uses 

articulatory parameters predicted from acoustics through inversion. 

Also related to our work are models of infant motor learning based 

on articulatory inversion/synthesis [14, 15].  Because these studies 

focus on the process of motor learning, they generally use synthetic 

speech or restricted natural utterances (e.g., vowel/consonant 

patterns, babbling).  In contrast, our work uses natural speech 

containing complete sentences. 

The paper is organized as follows. In section 2 we review 

related work on speech modification in the articulatory domain. 

Section 3 describes the articulatory inversion model and the data-

driven articulatory synthesizer we used in this work. In section 4 

we compare the quality of the resulting speech synthesis when 

using actual articulators or predicted articulators.    

2. RELATED WORK 

A few studies have shown how to incorporate articulatory control 

for modifying speech characteristics [4, 6, 16]. Toda et al. [6] 

proposed a data-driven language-independent method for flexible 

articulatory speech synthesis.  The authors used a GMM-based 

forward mapping to estimate acoustic parameters (Mel cepstral 

coefficients) from articulatory parameters (seven EMA positions, 

pitch and loudness). Then, they manipulated the EMA positions to 

simulate the effect of speaking with the mouth wide open. As a 

result of this manipulation, the authors observed a loss of high 

frequency components in fricatives. Though the articulatory 

manipulation was effective in modifying speech characteristics, it 

also reduced the synthesis quality compared to driving the GMM-

based forward mapping with unmodified articulators. Ling et al. [4] 

showed that incorporating articulatory parameters in a HMM-based 
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synthesizer [17] improved synthesis quality, as opposed to using 

only text input. The authors used a five-state left-to-right HMM 

structure with no skip to train context-dependent phoneme models 

on a combination of articulatory (six EMA positions) and acoustic 

features (40th-order frequency-warped LSFs). The output 

distribution of acoustic parameters was modeled as a Gaussian 

distribution with the mean value given by a linear function of the 

articulatory parameters and the state-specific parameters. The 

authors showed the feasibility of modifying vowels by 

manipulating articulatory parameters alone. As an example, 

increasing the tongue-height parameters led to a clear shift in 

vowel perception from /ɛ/ to /ɪ/ in synthesis. Similarly, decreasing 

the tongue-height parameters led to a shift from /ɛ/ to /æ/. 

Improvements in synthesis quality relative to Toda et al. [6] come 

from the use of phonetic information and the ability of HMMs to 

model the temporal properties of speech better than a GMMs. In a 

recent study [3], we used articulatory parameters to convert 

utterances from a non-native speaker so they sounded more native-

like. Our approach consisted of identifying mispronounced or 

accented diphones in the non-native utterances, and replacing them 

with units from the non-native speaker such that the substitute units 

closely matched the articulatory trajectories of a native speaker. 

Our method was able to reduce the perceived accentedness of the 

non-native utterance, though the reduction was limited by the 

availability of target units in the non-native corpus.  

These previous studies illustrate the feasibility of performing 

speech modifications in the articulatory domain, assuming 

articulatory measurements are available.  Though this is rarely the 

case, articulatory-based modification of speech may still be 

possible if acoustic features can be mapped accurately into the 

articulatory domain (i.e., through inversion).  As a step towards this 

objective, the present study seeks to understand the effect of 

replacing measured articulators with inverted articulators. For this 

purpose, we use the GMM-based articulatory synthesizer of Toda 

et al. [6] since it does not require access to the phonetic 

transcription; this allows us to focus on issues in synthesis quality 

that are due exclusively to articulatory information. 

3. ARTICULATORY INVERSION AND SYNTHESIS 

METHODS 

To evaluate the effectiveness of inverted articulatory features we 

used the articulatory inversion and articulatory synthesis strategy 

outlined in Figure 1. Our articulatory inversion method predicts 

Maeda articulatory features from the audio signal through the 

following four steps. First, we extract pitch     , aperiodicity and 

spectral envelope using STRAIGHT [18]. In a second step, we 

compute Mel Frequency Cepstral Coefficients (MFCCs) by 

warping the STRAIGHT spectral envelope according to the Mel-

frequency scale and then applying a type-II discrete cosine 

transformation (DCT). Then, we map MFCCs into Maeda 

parameters with an RBF network; see section 3.1 for details. 

Finally, we smooth the trajectory of inverted Maeda parameters 

with a low-pass filter to match the natural smoothness of measured 

Maeda trajectories. In what follows, we refer to the filtered 

inverted Maeda parameters as iMaeda to differentiate them from 

the actual Maeda parameters.  

Our articulatory synthesis method involves three steps, as 

illustrated in Figure 1(b). First, we use a GMM-based forward 

mapping to estimate spectral features (MFCC1-24) from articulatory 

features (Maeda and delta-Maeda), log pitch (      ), and the 

energy parameter (MFCC0). In a second step, we reconstruct the 

STRAIGHT spectral envelope from the estimated spectral 

coefficients (MFCC1-24) and the energy parameter (MFCC0) in the 

original speech. Specifically, given a vector of predicted MFCCs, 

the least-squares estimate of the spectral envelope is   ̂  
           , where   is the Mel Frequency Filter Bank (MFB) 

matrix used to extract MFCCs from the STRAIGHT spectrum, and 

  is the exponential of the inverse DCT of MFCCs.  In a final step, 

we use the STRAIGHT synthesis engine to generate the waveform 

using the estimated spectral envelope, aperiodicity and pitch (  ). 

In the following subsections, we provide details of the RBF-

based articulatory inversion model and the GMM-based forward 

mapping model. 

3.1 Inversion model  

Following Chao and Carreira-Perpiñán [5], we use an RBF-based 

inversion model. Given a static acoustic feature vector     at 

frame  , the inversion model estimates the corresponding static 

Maeda parameters   ̂      ∑      ‖     
 ‖  

      where 

               are weight vectors,   is the number of hidden 

nodes in the RBF network, and             are the centroids 

of the Gaussian basis functions. The basis function is defined as 

                 where   ‖     
 ‖ and   is the spread 

parameter. The centroids   
  are obtained through k-means 

clustering of the acoustic feature vector    in a training set, 

whereas the weights    are learned using the pseudo-inverse 

method [19] with a regularization parameter,  . Parameters   and   
are selected through cross-validation while training the RBF 

network [5]. 

3.2 Forward mapping model  

Following Toda et al. [6], we use a GMM-based forward mapping 

model coupled with global variance [20] to estimate the trajectory 

of spectral features from the trajectory of articulatory parameters. 

Assume    is an articulatory feature vector consisting of (a) static 

and dynamic (delta) Maeda parameters, (b) energy, and (c) log 

pitch at frame  . Let   
  be the target spectral feature vector 

(MFCC1-24) of dimension  . Then, the distribution of the joint 

vector        
     

     is modeled as  

 (  | 
   )   ∑           

   
   

   
 

 

   

  (1) 

  
(a) (b) 

Figure 1: Block diagrams of the articulatory (a) inversion and 

(b) synthesis methods 
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where     is the weight of the  th mixture component and 

       
   

   
   

  is its normal distribution with mean   
   

  and 

covariance matrix   
   

. We will use the symbol      to denote the 

parameter set for the GMM model, which consists of weights, 

mean, and covariance matrices of all individual mixture 

components. All model parameters are learned from the training set 

of joint vectors    using expectation-maximization (EM).  

Given a GMM model, we calculate the maximum likelihood 

estimate of spectral features considering the dynamics and the 

global variance (GV) as follows. Let column vector   
    

    
    

       
     denote the sequence of static and dynamic 

spectral features from all    frames in a sentence, where    
    

       
      is the target spectral feature column vector 

composed of static spectral features    
   and the corresponding 

dynamic features     
  at frame   . Similarly, let column vector 

      
    

    
       

     denote the sequence of articulatory 

feature vectors of the same   frames where   
      

       
     . 

Also, consider the within-sentence variance of the  th component of 

spectral features given by      
 

 
 ∑         ̅      

   , where, 

 ̅    
 

 
∑       

   
 

 
 and       is the  th component of static 

spectral feature vector at time frame  . Thus, the GV of the static 

spectral feature is written as 

                                    where   is the 

dimension of static spectral feature vector   
 , and   is the 

sequence of static spectral features     
    

    
       

    . Now, 

the time sequence of estimated spectral feature vectors (static only) 

is given by the following equation: 

 ̂         
 

                  (2) 

where       {  
      

    },    
    is the vector of average variance 

for all spectral features and   
     is the corresponding covariance 

matrix, learned from the distribution of      in the training set. 

The likelihood                   is computed as  

 ( |           )   ( |           )
 
    (    |    )   (3) 

The distribution of GV,              , is modeled by a single 

Gaussian  (       
      

    ). The power term        ⁄   in 

equation (3) controls the balance between the two likelihoods. 

Following [20], we use EM to solve for   ̂  in equation (2). 

4. EXPERIMENTAL RESULTS  

We evaluated our inversion/synthesis methods on an 

articulatory/acoustic dataset of 640 sentences uttered by a single 

speaker (rgo) described in [3]. Following Bawab et al. [21], we 

estimated six Maeda parameters (jaw opening, tongue back 

position, tongue shape, tongue tip height, lip opening and lip 

protrusion) from drift-corrected EMA (Electromagnetic 

Articulography) positions. The seventh Maeda parameter (larynx 

height) cannot be calculated from EMA. We then normalized the 

Maeda parameters to zero mean and unit variance. We computed 

25 MFCCs (MFCC0-24), from the STRAIGHT spectrum, and used 

MFCC0 as the energy parameter and MFCC1-24 as spectral features. 

Pitch and aperiodicity were also extracted from STRAIGHT 

analysis, and later used in waveform generation.  Maeda and 

MFCCs were obtained for synchronous time steps sampled at 

200Hz. Out of the 640 sentences, we randomly selected 100 

sentences as a test set, and used the remaining 540 sentences to 

train the inversion and forward mappings. 

4.1 Accuracy of the inversion model 

Following Chao and Carreira-Perpiñán [5], we trained an RBF 

network with 25 input nodes (25 MFCCs), 1024 hidden nodes, and 

6 output nodes using all non-silent frames from the training 

sentences. We then predicted Maeda parameters for all the non-

silence frames in the test sentences. Figure 2(a) shows the 

trajectories of inverted and actual Maeda parameters (tongue shape 

and tongue tip) on a sample utterance, whereas Figure 2(b-c) shows 

the average RMSE (root mean squared error) and average CC 

(correlation coefficient) and between inverted and measured 

parameters. Predictions of tongue shape had the least accuracy 

(RMSE=0.80, CC=0.69), followed by lip protrusion (RMSE=0.76, 

CC=0.71) and tongue tip (RMSE=0.73, CC=0.81). Lip opening 

(RMSE =0.54, CC=0.83) had the highest accuracy among the six 

Maeda parameters.  

4.2 Synthesis quality with measured and predicted 

articulators 

After establishing the accuracy of the inversion model, we 

designed an experiment to compare the quality of synthesis driven 

by either measured or predicted Maeda parameters. For this 

purpose, we trained a GMM-based forward mapping model with 

256 mixture components using measured Maeda parameters. Then, 

we generated two sets of syntheses. The first set (MaedaSynth) was 

obtained by driving the GMM with measured Maeda features; the 

second set (iMaedaSynth) was obtained by driving the GMM with 

predicted Maeda parameters. We then calculated the average MCD 

(Mel cepstral distortion) between non-silent frames in the original 

and synthesized utterances as 

     
  

    
√  ∑ (     

   
      

   
)
 

  
      (4) 

where      
   

and      
   

 are the     MFCC coefficient of the 

original and synthesized sentences, respectively. As shown in 

Figure 3(a), the quality of iMaedaSynth (MCD=4.92dB) was 7% 

worse than that of MaedaSynth (MCD =4.60dB).  

We also conducted a listening test to evaluate the subjective 

quality of MaedaSynth and iMaedaSynth. Given that both synthesis 

methods involved lossy compression of STRAIGHT spectra into 

MFCCs, we also evaluated a third set of synthesis (mfccSynth), 

   
    (a)       (b)       (c) 

Figure 2: (a) Trajectories of actual (dotted blue) and inverted 

(solid red) Maeda parameters of a typical sentence. (b) Accuracy 

of inverted Maeda features (JO=jaw opening, TB=tongue body 

position, TS=tongue shape, TT=tongue tip, LO=lip opening, 

LP=Lip protrusion). (c) Correlation coefficient between measured 

and inverted Maeda parameters. 
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which consisted of mapping STRAIGHT spectra into MFCCs and 

back to STRAIGHT spectra. For the perceptual tests, listenersa 

(n=30) were asked to rate 30 sentences (10 sentences for each of 

the three synthesis methods, presented randomly without 

repetition) using Mean Opinion Score (MOS: 1=Bad; 2=Poor; 

3=Fair; 4=Good; 5=Excellent). Before the test began, participants 

were calibrated by listening to sample sounds with accepted MOS 

values. Results are shown in Figure 3(b). The baseline method 

(mfccSynth) was rated highest with an average MOS of 3.0. 

MaedaSynth and iMaedaSynth received average MOS of 2.4 and 

2.1 respectively, a result that is consistent with the objective 

evaluation in Figure 3(a). In conclusion, both objective and 

subjective evaluations indicate that the articulatory-inversion 

model degraded the quality of synthesized speech. Does this result 

mean that articulatory inversion cannot be used to enable speech 

modification in the articulatory domain? Not quite, as we show 

next. 

4.3 Retraining the forward mapping model with predicted 

articulators  

Could the loss of quality of iMaedaSynth have been caused by 

training the articulatory inversion and forward mapping separately? 

To answer this question, we decided to retrain the GMM forward 

mapping using iMaeda parameters (from training sentences) 

instead of the measured Maeda parameters. Then, we generated a 

new set of syntheses (iMaedaSynth2) for the same test sentences in 

iMaedaSynth. To evaluate the synthesis quality, we computed 

MCD of iMaedaSynth2 and compared against the MCD for 

MaedaSynth and iMaedaSynth. Results are shown in Figure 3(c): 

the iMaedaSynth2 model (mean MCD: 4.06) not only outperforms 

the iMaedaSynth model (mean MCD: 4.92) but also the 

MaedaSynth model (mean MCD: 4.60).  

To confirm these results, we conducted pairwise listening tests 

to compare the subjective quality of iMaedaSynth and 

iMaeadaSynth2. Participants (n=10) were asked to listen to parallel 

syntheses of the same sentence (one from iMaedaSynth, the other 

from iMaedaSynth2) and then select the one they perceived to be of 

better quality. Each participant listened to 60 such pairs (30 pairs of 

sentences presented twice in reversed order to avoid ordering 

effects). On average, the iMaedaSynth2 was preferred 68% of the 

time over iMaedaSynth (95% confidence interval  5.38%).  In a 

                                                                 
a Participants were recruited through Amazon Mechanical Turk. 

Only residents in the US were allowed to participate in the study. 

final perceptual study we compared iMaedaSynth2 against 

MaedaSynth. On average, iMaedaSynth2 was preferred 57% of the 

time over MaedaSynth (95% confidence interval  3.85%). Thus, 

these results indicate that training the articulatory synthesizer with 

predicted articulators not only reverses any errors introduced by the 

articulatory inversion model but also provides higher synthesis 

quality than what could be achieved if ground-truth articulators 

were available. 

5. DISCUSSION 

The objective of this study was to evaluate the use of inverted 

articulatory parameters in data-driven articulatory speech synthesis. 

Our initial results show that replacing measured articulators with 

predicted articulators reduces the quality of a GMM-based 

synthesizer [6], as measured by Mel cepstral distortion and Mean 

Opinion Scores. However, the apparent loss of synthesis quality 

can be avoided by retraining the GMM on predicted Maeda 

parameters rather than on measured Maeda parameters. More 

importantly, driving the retrained synthesizer with inverted 

articulators (iMaedaSynth2) generates speech of higher quality than 

the original synthesizer driven by ground-truth articulators 

(MaedaSynth), as measured by Mel cepstral distortion and Mean 

Opinion Scores. Thus, it appears that the inversion step facilitates 

the synthesis process by eliminating variance in the articulators that 

is not predictive of (predicted by) acoustic information. These 

results suggest that inverted articulatory features can be used in 

speech synthesis without compromising synthesis quality, and open 

up the possibility of speech modification in the articulatory domain 

through articulatory inversion.  

Our inversion results indicate that predictions of tongue-

related parameters and lip protrusion are the least accurate.  These 

results are consistent with previous studies [5, 6] and can be 

attributed to the higher degree of freedom of the tongue compared 

to jaw and lips. The poor subjective quality of MaedaSynth (MOS: 

2.4) also deserves further discussion. At first, this result may 

suggest that there are issues with our articulatory synthesizer.  

However, the baseline synthesis method (mfccSynth), which sounds 

very similar to the original recordings and comparable to those 

rated as 4.1 MOS in [20], also received a low rating (MOS: 3.0).  

In previous work [22], we reported that recordings from a non-

native speaker in the CMU-ARCTIC corpus received significantly 

lower MOS than those from a native speaker in that same corpus. 

Thus, the low ratings in our study can be attributed to the 

characteristics of the original recordings (i.e., utterances from a 

non-native speaker, EMA interfering with speech production).   

The results presented here were obtained using a speaker-

dependent articulatory inversion model.  Further work is needed to 

test whether similar results can be achieved with subject-

independent inversion models. Though the task appears 

challenging, Ghosh and Narayanan [11] have recently shown that 

articulatory features predicted from speaker-independent models 

can boost automatic speech recognition.  
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      (a)    (b) (c) 

Figure 3: (a) Objective and (b) subjective evaluation of 

articulatory synthesis driven by measured and predicted Maeda 

parameters; MaedaSynth (MS): driven by measured Maeda 

parameters; iMaedaSynth (iMS): driven by iMaeda; mfccSynth 

(mfccS): synthesis following MFCC compression. (c) Objective 

comparison of synthesis quality of iMaedaSynth2 (iMS2) with 

MaedaSynth (MS) and iMaedaSynth (iMS). 
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