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ABSTRACT

There has been little work on examining how deep neural networks
may be adapted to speakers for improved speech recognition accu-
racy. Past work has examined using a discriminatively trained affine
transformation of the input features applied at a frame level or the
re-training of the entire shallow network for a specific speaker. This
work explores how deep neural networks may be adapted to speak-
ers by re-training the input layer, the output layer or the entire net-
work. We look at how L2 regularization using weight decay to the
speaker independent model improves generalization. Other train-
ing factors are examined including the role momentum plays and
stochastic mini-batch versus batch training. While improvements
are significant for smaller networks, the largest show little gain from
adaptation on a large vocabulary mobile speech recognition task.

Index Terms— Large vocabulary continuous speech recogni-
tion, Multilayer perceptrons, Deep neural networks, Speaker adapta-
tion

1. INTRODUCTION

In automatic speech recognition systems it is common to adapt a
well-trained, general acoustic model to new users or environmental
conditions. There are a variety of common techniques for Gaussian
mixture model-based (GMM) acoustic models of speech and much
research in this area [1]. Recently, the multilayer perceptron (MLP)
has shown excellent results for modeling speech acoustics [2]. Since
many more layers, for example 5 to 9 layers, are used than was typ-
ically explored in the past, this has been described as a deep neural
network or DNN. With the recent trend towards adopting this acous-
tic model, it is worth investigating if and how DNNs can be adapted
for new users or environments. Whether adaptation is even neces-
sary is debatable since the larger networks have been shown to be
invariant to some speaker effects, although they may still gain from
some feature space transformations [3]. This paper examines how
specific layers in a DNN acoustic model can be adapted directly for
specific speakers, and how the size of the network and regularization
during training affect supervised speaker enrollment and unsuper-
vised speaker adaptation strategies.

The paper is organized as follows. First, commonly used
speaker adaptation techniques for GMM-based acoustic models
are discussed. Second, an overview of state-of-the-art DNN acoustic
modeling is described along with a review of techniques for adapting
neural network models. Experiments contrasting these techniques
are reported next. Finally conclusions based on the experimental
results are summarized.

2. GMM SYSTEM ADAPTATION

Many state-of-the-art speech recognition system use a hidden
Markov model of speech with GMMs modeling the output context-
dependent state distributions. To improve performance, they may
use a variety of adaptation techniques that will be described briefly
here. A Gaussian in the speaker independent acoustic model, con-
taining all states, can be indexed by m, with mean and variance
parameters denoted by µm and Σm. The acoustic model can be
estimated directly from the speaker data, but using the well-trained
speaker independent model as a prior. This results in a maximum
a posteriori update of the model mean [4], also know as MAP
estimation

µ̂m =
τµm +

∑T
t γm,tot

τ + T

where T total adaptation frames, τ controls weight of prior data, and
γm,t is the posterior probability of Gaussian component m at time
t. This approach deals with data sparsity by using the prior model
information.

An alternative is to tie the model transformation across the many
acoustic model parameters, which leads to the formulation for max-
imum likelihood linear regression, or MLLR [5]. A shared affine
transformation is applied to the model means

N (ot; µ̂m,s,Σm) = N (ot;Asµm + bs,Σm) (1)

to maximize the likelihood of observed data from the speaker given
the model parameters, where ot is a frame of speech from the
speaker, As and bs the matrix and bias of the affine transform for
speaker s. This requires an update of every model mean in the
acoustic model every time the speaker changes.

An alternative technique is called constrained MLLR (CM-
LLR) [1] which constrains a matrix in the transformation of the
model means and variance. This can be manipulated into being a
transform that is applied efficiently to the speech features, with the
model parameters unchanged

N (ot; µ̂m,s, Σ̂m,s) = |As|N (Asot + bs;µm,Σm) (2)

Rather than using a single transformation per speaker, transforms
can be estimated for similar Gaussians in the acoustic model by clus-
tering them, e.g. using regression trees [6, 7]. This improves the
power of MLLR and CMLLR transformations.

3. DEEP NEURAL NETWORK ACOUSTIC MODELS

The use of neural networks for acoustic modeling in speech recog-
nition is not novel. The multilayer perceptron neural network was
used for speech recognition in [8]. However the computation power
over a decade ago limited their effectiveness. The recent successful
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application of deep neural networks for acoustic modeling has been
shown to be due to:

• deep networks of many layers,

• wide hidden layers of many nodes, and

• many context dependent states to model phonemes.

Graphics processing units have also enabled these deep net-
works to be trained in reasonable amounts of time. The power
of DNNs over conventional GMMs for acoustic modeling in large
vocabulary continuous speech recognition has been demonstrated
in recent literature, where the number of hidden layers is between
5 and 9, with thousands of hidden nodes and context dependent
output states [9, 10]. The DNN is also adept at de-correlating
frames allowing a larger context window with many consecutively
“stacked” frames of log filterbank features compared to mel fre-
quency ceptral coefficients (MFCC) or perceptual linear prediction
(PLP) features [11] (on the order of 26 frames compared to 11 re-
spectively). While there is some debate whether pre-training [12],
or other forms of neural network initialization [3] are needed, all
continue to use back-propagation to fine-tune the DNN [13], that is
using this weight update at time t

∆wt = −ε∇wE(wt) (3)

where∇w represents the gradient operator with respect to the weight
vector w,E(w) the error function and ε the learning rate. It has been
found that using momentum [14] can speed up the training process
by adding common contributions from previous updates to the gra-
dient update in a second term

∆wt = −ε∇wE(wt) + α∆wt−1 (4)

For example, with α set to 0.9, constant parts of the gradient are
amplified by 1/(1−α) or 10, while parts that oscillate are smoothed
out over time.

To apply the neural network in acoustic modeling, the CD state
emission likelihood is computed from the CD state posterior gener-
ated by the DNN as follows using Bayes’ Rule

p(o|s; θ) ≈ P (s|o; θ)

P (s; θ)
(5)

where o denotes the feaures, s a CD state, and P (s) the state prior.
The approximation would be an equality if the right hand side was
multiplied by p(o).

The first DNN deployed in production by Google [15] has the
topology shown in figure 1. The number of parameter comparisons
is shown for a GMM based system that had approximately the same
real time speed.

3.1. Adaptation of Neural Networks

Previous work in [16] looked at speaker adaption of shallow neural
networks and with context independent units. The networks exam-
ined were small: 9 stacked frames yielding 234 inputs, one hidden
layer of 1000 units, and 48 outputs one for each context indepen-
dent phone. Adaptation was performed by either estimating a nor-
malization affine transform applied to each frame trained via back-
propagation, re-training the entire network, or both combined. Sig-
nificant gains were achieved using these techniques. Later this was
referred to as feature-space discriminative linear regression and ap-
plied to a large vocbaulary task with a DNN [3]; the improvement on
a 45M parameter network (16.9M non-zero) was less at 4% relative.

This paper is motivated by this previous work to examine how
re-training only portions of the network and the size of the network
affects speaker adaptation performance. This paper will also exam-
ine how regularization may be used to improve generalization. This
can be done by adding half of a squared penalty term that to the error
function to minimize the difference between the updated weight and
unadapted network weight, which shall be referred to as L2 prior
regularization. Here the weight update in equation 4 then becomes

∆wt = −ε∇wE(wt) + α∆wt−1 − β(wt−1 −w0) (6)

where β is the weight decay factor on the L2 penalty term which de-
cays the weights towards the original model weights. The larger
the penalty term, the more difficult it is for the updated weights
to deviate from the original model weights w0. This is similar to
what is described as MAP adaptation of a maximum entropy model
in [17]. In [18], the solution to overfitting the constrained transform
for adapting the first layer in a network to a speaker can also be
viewed as L2 regularization.

This paper will also examine various aspects of the training pro-
cedure including the optimization hyperparameters such as learn-
ing rate and momentum, supervised enrollment versus unsupervised
training, how the amount of data affects gains and stochastic mini-
batch vs batch training.

4. EXPERIMENTAL RESULTS

The experiments are conducted on proprietary, anonymized mobile
search data sets. Utterances are typically short at about 3-10 seconds
in duration. The training set is approximately 3000 hours of mobile
speech data. Two test sets were used, the first Unified1a is an
uniform sampling of 30 hours of mobile search data which includes
VoiceSearch queries and VoiceIME dictation. The second is sampled
from users who have opted to donate their speech data [19]. This
allows the construction of an anonymized data set of 80 speakers,
each with about an hour of adaptation data to form Pers1a adapt
set and ten minutes of evaluation data to form an evaluation set
Pers1a eval.

The vocabulary of the recognition system is approximately one
million words. The language model is a Katz smoothed language
model trained on both the transcribed acoustic training data, written
query sources and unsupervised mobile speech data. A variety of
acoustic models are evaluated. The speaker independent, real-time
GMM system uses PLP features [20], semi-tied covariances [21]
and linear discriminant analysis for dimensionality reduction of

Fig. 1. Mobile speech recognition deep neural network.
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the 9 consecutively stacked PLP features down to 39 dimensions,
and boosted MMI discriminative training [22] of context-dependent
states [23] clustered using decision trees [24] to 7969 states; the
real time GMM system contained a total of 340k Gaussians, while
a larger 500k Gaussian was also available. The deployed DNN sys-
tem uses 11 stacked 40-dimensional log filterbank feature frames,
4 hidden layers of 2560 nodes each, and 7969 output nodes corre-
sponding to the same context dependent state inventory. A much
smaller DNN was trained with 16 stacked frames, 4 hidden layers
of 512 nodes each and 1000 outputs. Also a larger DNN with 26
stacked frames, 6 hidden layers of 2176 nodes and 14247 outputs
was trained to be more comparable to the results in [3].

4.1. Experiments on Unified1a

First some experiments are done on the Unified1a test set. Ta-
ble 1 compares the relative performance of the various acoustic mod-
els discussed above. The results demonstrate that for a similar num-

Model # of params Unified1a

GMM, 100k Gaussian 7.5M 20.6
GMM, 340k Gaussian 27M 16.0
GMM, 580k Gaussian 46M 15.4
DNN, 4x512+1000 1.6M 16.1
DNN, 4x2560+7969 41M 12.3
DNN, 6x2176+14000 60M 9.9

Table 1. Comparison of unadapted GMM and DNN acoustic mod-
els, number of parameters and % WER.

ber of parameters (41M) the DNN is significantly better than the
GMM system. The DNN system is also effective at smaller and
larger network sizes, whereas the GMM system degrades badly at
100k Gaussians and doesn’t improve much by increasing the num-
ber of parameters beyond 580k Gaussians. However on an embed-
ded device the smallest 100k Gaussian GMM system was able to run
in realtime on a recent mobile device, whereas the small 4x512 DNN
is slightly slower on the same device.

4.2. Experiments on Pers1a

Some comparisons can be made between a GMM system and a
DNN. We choose to compare a slightly smaller GMM system (27M
parameters) with the 41M parameter DNN system since it is only
slightly worse than the bigger system and from experience adapta-
tion of GMM based systems tends to work better when the models
are smaller. Table 2 compares various GMM system adaptation
techniques with the 4x2560 hidden layer DNN. CMLLR and MLLR
give similar gains and improve as expected with increased number

System Speaker # of Transforms (%WER)
Adaptation — 2 16 256

GMM

— 18.3
CMLLR 16.7 16.1 16.1
MLLR 16.7 16.1 15.7
MAP, τ=1.0 16.7

DNN — 14.1

Table 2. Comparison of unsupervised speaker adaptation, using 1
hour of adaptation data, of 340k Gaussian GMM acoustic model
with 4x2560 hidden layer DNN on Pers1a (%WER).

of transforms; at 256 transforms the relative reduction in word error
rate (WER) is 12-14%. MAP adaptation does surprisingly poorly,
yielding the equivalent gain of 1 MLLR transform; perhaps this is
due to the errors in the adaptation hypothesis. The unadapted DNN
performs better than any of the adapted GMM systems; although it
is larger, it is unlikely that a larger adapted GMM system would be
better than the unadapted DNN system since the absolute difference
on Unified1a between the smaller and bigger GMM system was
0.6%.

Neural Network Adaptation

The DNN can be adapted as suggested previously. Instead of apply-
ing a discriminatively trained transform of the features, in this work
for speaker adaptation we look at only re-training the input layer, the
output layer or the entire network. When training and re-training,
for adaptation, the neural networks a default step size of 0.02 was
used, along with momentum set to 0.9, weight decay set to 0.01 and
a mini-batch size of 200 frames. First some initial experimentation
was done with one speaker to test some of the hyperparameters set-
tings. A single speaker has about 1500 words for adaptation and
1500 words for the held-out evaluation testing. Table 3 shows the
difference between using momentum or not during adaptation.

Adapt α ε Adapt (Epochs) Eval (Epochs)
Style 1 10 100 1 10 100

— 11.7 15.0
Mini- 0.9 0.02 7.6 6.8 5.9 11.7 11.6 11.9
Batch 0.0 0.2 7.9 7.0 6.4 12.0 11.4 11.5

Batch 0.9 0.02 11.3 11.0 8.2 14.3 13.5 11.9
0.0 0.2 11.5 10.5 8.2 14.3 13.3 12.0

Table 3. Comparing effect of momentum (α) for adapting a 4x512
hidden layer DNN to one speaker (% WER): Adapt is a ten minute
portion of the adaptation data, whereas Eval is the held out test.
Mini-batch training used momentum, batch training did not.

Compared to multiplying the step size by ten to 0.2, momentum
was found to give similar results but nevertheless applied for con-
sistency with the original neural network training regime. We also
found stochastic mini-batch to converge faster than batch updates,
e.g. within 10 epochs versus 100-1000 epochs in a batch training
scenario. With mini-batch training and without regularization, the
error rates could be reduced by more than half on the adaptation
data, but didn’t generalize on the held out evaluation data; using L2
prior regularization improved results as shown in table 4. The L2
prior regularization was found to be not useful with batch training,

Adapt β Adapt (Epochs) Eval (Epochs)
Style 1 10 100 1 10 100

— 11.7 15.0
Mini- 0.01 7.6 6.8 5.9 11.7 11.6 11.9
batch 0 7.2 4.8 2.8 11.9 12.5 14.8

Batch 0.01 11.5 10.5 8.2 14.3 13.3 12.0
0 11.5 10.4 8.3 14.3 13.3 12.2

Table 4. Comparing using L2 prior regularization (β := weight
decay) for adapting a 4x512 hidden layer DNN to one speaker
(% WER): Adapt is a ten minute portion of the adaptation data,
whereas Eval is the held out test. Mini-batch training used mo-
mentum, batch training did not.
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probably due to the smoother gradients. Further network adaptation
results all use L2 prior regularization.

Enrollment-style network adaptation

One approach to speaker adaptation is to have speakers read some
material where the transcript is known and use this labeled data to
fine-tune the network. This is often called speaker enrollment. In
this work though we do not have speakers read data, rather we use
the labeled results for 10 minutes of the adaptation data as the en-
rollment data for supervised training. Table 5 shows the results for
this type of speaker adaptation where the number of epochs is shown
and different parts of the DNN are adapted. Note that while labeled
data is used to adapt the network to each speaker, the results are on
held out evaluation data.

# Epochs (%WER)
Adaptation 1 10 100
— 17.1
Input layer 15.7 15.4 15.2
Output layer 16.4 16.0 15.9
All layers 14.4 14.2 14.4

Table 5. Enrollment style speaker adaptation of a 4x512 hidden
layer DNN evaluated on Pers1a (%WER).

Although there are more output parameters, only updating the
input layer gives better results than only updating the output layer.
Even better is updating all 1.6M parameters in the network. Surpris-
ingly, after 1 epoch most of the gains for adaptation are achieved.
Only updating a single layer gives a relative improvement of around
10% whereas the entire network more than 15%. These are similar to
the gains found when adapting GMM acoustic models with common
techniques.

Unsupervised network adaptation

The previous section looked at adaptation when the labels for the
adaptation data were known. Whether the adaptation improvements
hold when the labels are unknown is not certain. In this section,
results are obtained by adapting the network per speaker with la-
bels determined from the large 6x2176 deep DNN, i.e. with a WER
of 10.2% on the 10 minutes of adaptation data. These results are
shown in table 6. The upper three rows demonstrate large gains of

# Epochs (%WER)
Test set Adaptation 1 10 100

Adapt10min

— 16.5
Input layer 14.6 13.8 13.5
Output layer 15.5 14.5 14.0
All layers 12.5 11.5 11.2

Eval

— 17.1
Input layer 15.8 15.5 15.3
Output layer 16.5 16.2 16.0
All layers 14.7 14.5 14.5

Table 6. Unsupervised speaker adaptation of a 4x512 hidden layer
DNN evaluated on Pers1a (%WER).

6-30% relative when evaluating on the same unsupervised adapta-
tion data. Thus this approach could be used for offline systems that

use multi-pass decoding strategies. In the bottom three rows, the un-
supervised enrollment adaptation shows less improvement than with
the speaker enrollment in table 5, but the adaptation of the entire net-
work still shows about 15% relative gain indicating an incremental
unsupervised adaptation strategy could work well.

Adaptation of a large network

The previous DNN adaptation results demonstrated that speaker
adaptation could work well for a small network. Table 7 describes
results of unsupervised adaptation of a large DNN. Here the results

# Epochs (%WER)
Test set Adaptation 1 10

Adapt10min

— 10.2
Input layer 10.4 10.0

Output layer 10.2 10.0
All layers 9.8 10.0

Eval

— 10.8
Input layer 11.0 10.9

Output layer 11.0 10.9
All layers 10.2 10.3

Table 7. Unsupervised speaker adaptation of a 6x2176 hidden layer
DNN evaluated on Pers1a (%WER).

are more mixed. While results with supervised data show improve-
ments, unsupervised adaptation of the large neural network shows
no gain for adapting just the input or output layer. There is a small
improvement from adapting the entire network, of 4.9% relative,
but storing an entire network of 60M parameters per speaker is
unwieldy. This minimal gain is slightly more than the 4% relative
found by using a speaker-level discriminative transform with a DNN
in [3] on the Fisher task; the discriminative transform is much more
compact and can be estimated more rapidly. The minimal gain
can be attributed to the large number of layers in the network that
perform a powerful speaker normalizing feature extraction [11].

5. CONCLUSIONS

This paper compares some standard speaker adapted GMM systems
with adaptation of deep neural networks. As shown in prior work
an unadapted DNN system is handily better than an adapted GMM-
based acoustic model. In this work we show that L2 prior regular-
ization is helpful in improving generalization when adapting neural
networks to speaker specific data. While momentum wasn’t found
to be appreciably useful, mini-batch training converged considerably
faster than batch and yielded slightly better results. It is also shown
that small networks can benefit from both supervised and unsuper-
vised speaker adaptation. Similar to previous work, large neural net-
works do not benefit as much from adaptation techniques.
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