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ABSTRACT

An approach is proposed for adapting subspace projection
vectors in the subspace Gaussian mixture model (SGMM) [1].
Subword models in the SGMM are composed of states, each
of which are parametrized using a small number of subspace
projection vectors. It is shown here that these projection vec-
tors provide a compact and well-behaved characterization of
phonetic information in speech. A regression based subspace
vector adaptation approach is proposed for adapting these
parameters. The performance of this approach is evaluated
for unsupervised speaker adaptation on two large vocabulary
speech corpora.

Index Terms— Speaker Adaptation, Phonetic Subspace

1. INTRODUCTION

This paper presents an approach for linear regression based
adaptation of subspace projection vectors in the subspace
Gaussian mixture model (SGMM) [1]. The SGMM is differ-
entiated from the continuous density hidden Markov model
(CDHMM) in that a large portion of the acoustic parameters
are shared amongst all states of the model. The parametriza-
tion of the SGMM is summarized in Section 2. SGMM states
are characterized by a small number of subspace projection
vectors. The remaining shared model parameters are com-
posed of linear subspace matrices and a shared pool of full
covariance Gaussians.

Section 3 of the paper argues that these state projection
vectors provide a compact and well-behaved characterization
of phonetic information in the speech signal. As a result,
one might expect that adapting parameters in this space might
be efficient. That is, it may provide a good model of pho-
netic variability with a minimal number of adaptation utter-
ances. To investigate this assertion, a linear regression based
subspace vector adaptation (SVA) procedure is proposed for
adapting the substate projection vectors. The adaptation pro-
cedure and the maximum likelihood based optimization algo-
rithm for parameter estimation is presented in Section 3. An
experimental study is performed to evaluate this adaptation
procedure on the Spanish CallHome and Resource Manage-
ment speech corpora in Section 4.
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This work is related to previous work in linear regression
based adaptation in both CDHMM and SGMM acoustic mod-
els. Applying a linear transformation either in model-space
or feature-space has been shown to be a powerful tool for
speaker adaptation in the CDHMM framework [2–5]. Some
of the techniques include model-space maximum likelihood
linear regression (MLLR) [2–4, 6] and feature-space con-
strained MLLR (CMLLR) [7, 8]. Prior adaptation research
in the context of the SGMM was performed by Ghoshal et
al. in [9]. That work involved a new estimation method for
feature-space MLLR within the SGMM framework. This
new estimation technique was shown to provide a relative
3.8% improvement in word error rate (WER) in the best case
for the CallHome English corpus.

2. SUBSPACE GAUSSIAN MIXTURE MODEL

This section provides a brief description of the SGMM acous-
tic model [1]. In this new formalism, HMM states share com-
mon parameters. The means and mixture weights are con-
trolled by a global mapping from a vector space, called “state
projection vector,” to the GMM parameters space and the co-
variance matrices are shared among all the states. An SGMM
state can be represented by one or more state projection vec-
tors. For an SGMM system configured with J states, each
having Mj substates, the observation distribution for feature
vector xt in state j can be written as:

bj(xt) =

Mj
∑

m=1

cjm

I
∑

i=1

wjmiN (xt|µjmi,Σi) (1)

wherem is the substate index. In (1) cjm is the relative weight
of substate m in state j. There are I full-covariance Gaus-
sian densities shared between all the states. The mean vector,
µjmi, for substate m in state j is a projection into the ith sub-
space defined by a S × S linear subspace matrix Mi,

µjmi = Mivjm. (2)

The S× 1 state projection vectors, vjm, in (2) for substate m
in state j are the state specific parameters in the SGMM. The
weights, wjmi, in (1) are obtained from the state projection
vector vjm using a log-linear model:

wjmi =
expwT

i vjm
∑I

i′=1 expw
T
i′vjm

(3)
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where wi denotes the weight projection vector. The parame-
ters of the SGMM model are estimated using the Expectation-
Maximization (EM) algorithm as described in more detail
in [1].

3. SUBSPACE VECTOR ADAPTATION (SVA)

3.1. Motivation

In the SGMM framework each state is associated with a
vector-valued quantity that is called a “state projection vec-
tor”. Figure 1(a) depicts a mapping of the state projection
vectors, vjm, onto a two dimensional space1. The figure
displays a scatter plot of these vectors for states associated
with context dependent phoneme models. The centroids of
state projection vectors, associated with context dependent
models with a given center context phoneme, are displayed
as text labels in the figure. There are two important charac-
teristics of this plot. First, it is clear that the state projection
vector for states corresponding to particular phonemes form
compact clusters. Second, the clusters are naturally arranged
in a space that is very similar to the articulatory based vowel
triangle. As a result, performing acoustic adaptation by trans-
forming the parameters in this space can be interpreted as
adaptation in an articulatory-like space. In this work, the
state projection vectors are adapted using an affine transfor-
mation of the form v̂jm = Avjm+b. The ultimate goal is to
find the transformation that maximizes the likelihood of the
adaptation data given the adapted model.

3.2. Defining the Auxiliary Function

Consider all substates have been partitioned into N clus-
ters {c1, . . . , cN}. To do the clustering, we use k-means
algorithm with random initialization and the normalized co-
sine as a distance measure between state projection vectors:
(vT

i vj)/(‖vi‖ · ‖vj‖). Then, all the substate vectors within
the same cluster are transformed using a single affine trans-
formation:

v̂jm = A(cn)vjm + b(cn) =
[

A(cn) b(cn)
]

[

vjm

1

]

= W(cn)ujm

in which A(cn) is a S × S matrix and b(cn) is the bias vector
for cluster cn. For simplicity in our notations we will drop su-
perscript (cn), keeping in mind that we are doing adaptation
for cluster cn. The parameters of the affine transformation are
found in a maximum likelihood (ML) fashion using EM ap-
proach [11]. Writing out the auxiliary function derived using

1We re-normalize the state projection vector as explained in Appendix K
of [10] to concentrate the most important variation in lower dimensions
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Fig. 1. (a) Scatter plot of the 1st and 2nd dimension of state
projection vectors for RM (b) ARPAbet vowel triangle

Jensens inequality, we have:

Q(W) = K −
T
∑

t=1

I
∑

i=1

∑

j∈S(cn)

Mj
∑

m=1

γjmi(t)×

[

1

2
(x(t) − µ̂jmi)

TΣ−1
i (x(t)− µ̂jmi)− log ω̂jmi

]

where γjmi(t) is the probability of being in state j, sub-
state component m and Gaussian mixture component i at
time t and the observation sequence X = {x(1), . . . ,x(T )}
is the sequence of the adaptation data on which the trans-
formation is to be trained. The optimum transformation
matrix can be found by maximizing Q(W) w.r.t. W.
The auxiliary function consists of two parts. The mean-
related part is very straight-forward to simplify. However,
to simplify the weight-related part, we take an approach
similar to the one used in [10]. We use the inequality
1 − (x/x) ≤ − log(x/x) (which is an equality at x = x)
and also the quadratic approximation to the exp(x) around
x = x0, i.e. exp(x) ≃ exp(x0)(1+(x−x0)+0.5(x−x0)

2).
The final auxiliary function will have the following form:

Q(W) =
∑

j,m

fTjmWujm−0.5
∑

j,m

uT
jmWTCjmWujm, (4)

where

fjm =
∑

i′

(γjmi′ − γjmωjmi′ + · · ·

γjmωjmi′wi′ ·Wujm)wi′ + yjm (5)
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and

Cjm =
∑

i′

γjmωjmi′wi′w
T
i′ +

∑

i

γjmiHi (6)

are the statistics that we need to accumulate in order to es-
timate the transformation matrix. The ωjmi′ and W cor-
respond to their current values and other parameters in (5)
and (6) are defined as follows:

Hi = MT
i Σ

−1
i Mi

yjm =
∑

t,i γjmi(t)M
T
i Σ

−1
i xT (t)

γjmi =
∑

t γjmi(t).

Because of using a quadratic approximation while simplify-
ing the weight part, there is no guarantee that increasing the
simplified cost function will increase our auxiliary function.
To tackle this problem, it is a “safer” option to take γjmωjmi′

in (5) and (6), which is the weighting term in the quadratic
part, and replace it with max(γjmωjmi′ , γjmi′) [10].

3.3. Optimizing the Auxiliary Function

To find optimum transformation matrix and bias vector we
maximize (4) w.r.t. A and b. First, to compute b we take the
derivative of (4) w.r.t. b and equate it to zero:

b =





∑

j,m

Cjm





−1 



∑

j,m

(fjm −CjmAvjm)



 . (7)

Then, to incorporate the new estimated value of b, we re-
compute the statistics of (5) and (6). After that, we employ
a gradient ascent approach to find the optimum transforma-
tion matrix. The reason is because finding the direct solution
requires inverting a low-rank S2 × S2 matrix which would
be computationally expensive and cause numerical instabili-
ties. In the iterative method, the transformation matrix in kth

iteration can be obtained as:

A(k) = A(k−1) + µ(k−1) ∂Q(W)

∂A

∣

∣

∣

∣

A(k−1)

(8)

where

∂Q(W)

∂A
=

∑

j,m

fjmvT
jm −

∑

j,m

Cjm(Avjm + b)vT
jm. (9)

The iteration terminates when the auxiliary function of
Q(W) stops increasing. We also need to initialize A. If
a previous estimate of A exists (for example, if we are run-
ning multiple passes over the adaptation data), it is used as the
initial estimate. Otherwise A(0) = I is a reasonable starting
point. Generally 3-4 passes over the adaptation data will be
sufficient to have a good estimate.

4. EXPERIMENTAL STUDY

This section presents an experimental study evaluating the
performance of the SVA approach described in Section 3.
Performance is reported as the WER obtained after unsuper-
vised speaker adaptation is performed on the Resource Man-
agement (RM) and Spanish CallHome speech corpora. After
introducing the task domain and describing how the baseline
speaker-independent CDHMM and SGMM acoustic models
are trained, we will present the speech recognition results us-
ing SVA technique. All the HMM training for CDHMM case
were done using standard HTK toolkit [12]. For the SGMM,
we use an implementation that is an extension to HTK with
added libraries [13]. We extended the HTK toolkit to support
SVA technique within SGMM framework.

4.1. Resource Management Read Speech Corpus

In the DARPA RM speech corpus, the degradation in ASR
performance is mainly due to intrinsic sources of variability
in speech. The environment and channel variability has rel-
atively minor effect on the ASR performance. This is not
the case for other corpora such as conversational telephone
speech domain. As a result, one can attribute reductions in
WER to the impact of adaptation techniques and the fact that
how good they can model intrinsic sources of variability in
the target speaker.

The RM corpus consists of 3990 utterances from 109
speakers taken from the standard RM SI-109 training set.
The speech is parametrized using 12 MFCCs, normalized en-
ergy and the first and second differences of these parameters
to give a 39 dimensional acoustic vector. The baseline system
was based on three-state left-to-right HMM triphone models.
Decision tree clustering was used to obtain a system with
1704 states, each having 6 mixtures of Gaussians. Also, the
SGMM system was trained using the same training data set
with I = 256 Gaussian mixtures shared between 1704 states
with joint posterior initialization (JPI) [13]. No speaker adap-
tive training was used during training the baseline models.
The ASR WER for CDHMM and SGMM baseline systems
are 4.91% and 4.52% respectively. The ASR was evaluated
using 1200 utterances from 12 speakers taken from the RM
speaker dependent evaluation (SDE) set. Also a 991 word
bi-gram language model was used.

Speaker adaptation is performed in an unsupervised mode
with an average duration of 5.33 minutes of speech data per
speaker. Figure 2 depicts the WER versus different number of
clusters for SVA adaptation technique and standard CMLLR
adaptation technique. The SGMM adaptation gives a relative
25% WER improvement with respect to SGMM baseline for
the best case.
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Fig. 2. The ASR word error rate for different number of clus-
ters for RM task domain

4.2. Spanish CallHome Conversational Speech Corpus

The Spanish CallHome corpus is known to be a unique chal-
lenge for speech recognition [14]. Apart from the small size
of the corpus, the speech data consists of inherent disfluen-
cies. We used 16.5 hours of conversational speech data for
training, and our test data consisted of 2.0 hours of conversa-
tional speech data collected from 46 speakers. The baseline
system was based on three state left-to-right HMM triphone
models, with a total of 1604 states. We used 16 Gaussian
mixtures per state. A set of 13 PLP features along with their
first and second differences were used as feature vectors. A
trigram LM was used with a vocabulary of 45k words. The
same 16.5 hours training set was used for training the SGMM
system. This system has I = 400 shared full covariance
Gaussians shared between 1604 states. The system was ini-
tialized with Gaussians obtained from a UBM obtained from
speech-only segments from all speakers in the training corpus.
Also, the flat start initialization approach was utilized [13].
No speaker adaptive training was used during training the
baseline models. The baseline WERs for the CDHMM and
SGMM systems are displayed in the first two rows of Table 1.

Speaker adaptation is performed in an unsupervised mode
with an average duration of 2.62 minutes of speech data per
speaker. We used only 2 clusters while doing the speaker
adaptation experiment. The third and fourth rows of Table 1
display the WERs for the CMLLR adapted CDHMM system
and the SVA adapted SGMM system, respectively.

4.3. Discussion

These two experiments show that the proposed unsupervised
SGMM adaptation technique provides substantial improve-
ment over an unadapted SGMM baseline system. It is clear
that the relative performance improvement is less than that ob-
tained by applying CMLLR to the CDHMM acoustic model.
One possibility can be the numerical issues and the way we

Table 1. WER for Spanish CallHome system. SAT indicates
that the speaker adaptive training was used in training.

System WER [%]

Baseline CDHMM 68.61
Baseline SGMM 67.29
CDHMM+SAT+CMLLR 65.55
SGMM+SVA 65.91

find the optimum solution. As discussed in earlier, due to
ill-conditionality, we take the gradient ascent approach to op-
timize our auxiliary function. There are so many ways of op-
timizing a cost function in an iterative manner. One can use
the simple gradient ascent algorithm and update the entire el-
ements of the matrix simultaneously at each iteration (as dis-
cussed in Section 3.3). An alternative method can be a row-
by-row approach, in which rather than the entire matrix, the
rows are updated at each iteration using the same approach as
in [15]. Among the methods we tried, the simple gradient as-
cent algorithm gives the best performance. Another possibil-
ity for higher WER of SGMM adaptation can be the choice of
auxiliary function. In our proposed method we use the maxi-
mum likelihood approach to find the best solution. Therefore,
there is no guarantee that the separability of the phonemic
elements will be preserved. So one can use the interpolation
of maximum likelihood criterion and discriminative objection
function, as a final auxiliary function.

5. SUMMARY AND CONCLUSION

A new speaker adaptation technique was proposed. We pre-
sented SVA approach for adapting substate projection vec-
tors in the SGMM framework. The SVA technique was mo-
tivated by the observation that the substate projection vectors
are distributed in compact articulatory-like space. We then
presented the experimental results. We obtained a 25% rela-
tive reduction in WER on the RM task domain and a 1.38%
absolute reduction in WER on the Spanish CallHome task do-
main. These improvements are consistent with those obtained
by Ghoshal et al in [9] using feature-space MLLR over the
SGMM baseline system. The paper concluded with a discus-
sion about the possibilities for having higher WER for SVA
adaptation compared to CMLLR adaptation.

The future work will involve combining our SVA tech-
nique with the SGMM-based feature-space MLLR adaptation
technique. We would like to investigate if we can use them as
two complimentary techniques for speaker adaptation within
the SGMM framework.
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