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ABSTRACT

Kullback-Leibler divergence based hidden Markov models (KL-
HMM) have recently been introduced as an efficient and principled
way to directly model sequences of posterior vectors to perform Au-
tomatic Speech Recognition (ASR). Through efficient feature level
adaptation and parsimonious use of parameters, KL-HMM was suc-
cessfully applied to accented and under-resourced speech recog-
nition tasks. In this paper, inspired from Maximum A Posteriori
(MAP) adaptation, we further boost KL-HMM performance by ap-
plying Bayesian speaker adaptation, directly applied to posterior fea-
tures. This approach performs a simple, adaptive regression between
phone posteriors estimated with a Multilayer Perceptron (MLP) on
large amounts of speaker-independent training data, and speaker-
specific phone posteriors generated by the speaker-independent MLP
on very limited amount of speaker-specific adaptation data. Using
Swiss French data (MediaParl), we show that such speaker adap-
tive KL-HMM can significantly outperform conventional adaptation
techniques on non-native speech while yielding similar performance
on native data.

Index Terms— Kullback-Leibler divergence, speaker adapta-
tion, non-native speech, speech recognition

1. INTRODUCTION

Several speaker adaptation techniques have been proposed to im-
prove Automatic Speech Recognition (ASR) performance. Speaker
adaptation is also particularly relevant in the case of non-native ASR,
given the high variability of accented speech and the usually small
amount of non-native speech data available for training [1, 2, 3, 4]. In
the context of HMM/GMM (Hidden Markov Models parametrized
by Gaussian Mixture Models), traditional solutions include Maxi-
mum Likelihood Linear Regression (MLLR), Maximum a Posteri-
ori (MAP), and model interpolation [1, 2, 3]. In the case of hy-
brid HMM/MLP systems (using a Multilayer Perceptron to estimate
emission probabilities), a Linear Hidden Network (LHN) was typi-
cally used to adapt the MLP to a speaker [4].

In a recent study [5], we presented an approach to deal with
the acoustic and pronunciation variability of non-native speech us-
ing a Kullback-Leibler divergence based hidden Markov model (KL-
HMM) for acoustic modeling. KL-HMM is a particular form of
HMM where each HMM state is parametrized by a trained posterior
distribution (reference posterior) which models posterior features es-
timated by an MLP as KL-HMM acoustic features. The MLP can be

This research was supported by the Swiss NSF through the project Inter-
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trained on multilingual data to estimate universal phone class poste-
rior probabilities (multilingual posterior features). The KL-HMM is
then able to exploit the multilingual information on a feature level
and learn the relation between non-native speech data and multi-
lingual posterior features. In such a multilingual setup, KL-HMM
was shown to outperform MLLR and LHN for non-native speaker
adaptation [5]. In those experiments, it was also observed that KL-
HMM was quickly yielding state-of-the-art performance with lim-
ited amount of training data.

In this paper, we propose and evaluate speaker adaptive KL-
HMM. Similar to MAP that adapts the Gaussian Mixture Models
(GMM) of an HMM/GMM based speech recognizer, the proposed
speaker adaptive KL-HMM adapts the generic reference posteriors
of the KL-HMM. Just using a couple of minutes of speech data, and
using the same speaker-independent MLP to generate features, we
train a speaker-specific KL-HMM. The generic KL-HMM reference
posteriors are then adapted by performing a linear combination with
the speaker-specific reference posteriors. For the sake of compari-
son (and in contrast to our earlier study [5]), we use a monolingual
MLP to generate the features in this work. We expect improvement
if a multilingual MLP is used, but leave the empirical verification for
future work.

For this study, we used data from the bilingual MediaParl1

database [6]. MediaParl is a Swiss accented bilingual database con-
taining recordings in both accented French and German, as they are
spoken at the Parliament in Valais, a state of Switzerland. The ad-
vantage of MediaParl is that it is a pretty large multilingual database
and the test set consists of bilingual speakers, hence non-native and
native speech recorded at same conditions.

In the sequel of this paper, we will first briefly review standard
KL-HMM techniques (Section 2) and then introduce the speaker
adaptive KL-HMM concept (Section 3). As described in Section 4,
we use the French part of the MediaParl database to show that the
performance of the speaker adaptive KL-HMM on native French
speech is comparable to MLLR and significantly better than MLLR
on non-native French speech. Initially, we also evaluated MAP.
However, since we deal with extremely low amounts of data (up
to five minutes), MLLR outperforms MAP. This result is consistent
with earlier studies [1] and we therefore only report MLLR results.

2. KL-HMM

The notion of KL-HMM was initially introduced by Aradilla [7]. In
this section, we briefly present the KL-HMM model and summarize
the basic training and decoding techniques.

1Documented and publicly available at http://www.idiap.ch/
dataset/mediaparl
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Fig. 1. KL-HMM - the emission probabilities are modeled with cat-
egorical distributions and the MLP output can directly be used.

2.1. KL-HMM modeling

As illustrated in Figure 1, a KL-HMM is a particular form of
HMM in which the emission probability of a particular state qd is
parametrized by a categorical distribution2 yd = (y1d, . . . , y

K
d )T,

where K is the dimensionality of the features (corresponding in our
case to the number of MLP outputs) and T the transpose operation.
The KL-HMM categorical distributions can directly be trained from
phone class posterior probabilities zt.

In most of our initial KL-HMM work [5, 8], we often used the
symmetric variant of the KL divergence. More recently, though, it
was observed that the asymmetric KL divergence KL(x||y), as de-
fined below, was consistently more robust. This is also intuitively
reasonable. Indeed, the underlying acoustic modeling problem is
not symmetric since we observe the posterior features and train the
categorical distributions. Therefore, we use the following Kullback-
Leibler based distance as local score in this study:

d(zt,yd) =

K∑
k=1

zkt log
zkt
ykd
. (1)

A detailed description of training and decoding algorithms based on
the symmetric variant of the KL divergence can be found in [8]. In
this paper, we use the asymmetric KL divergence as given in (1). For
clarity, we briefly review the training and decoding algorithms.

2.2. KL-HMM training

The categorical distributions Y = {y1, . . . ,yD} can be learned us-
ing an iterative Viterbi segmentation-optimization scheme. The cost
function can be defined by integrating the local score, given in (1),
over time t and states qd, resulting in:

F(Z, Y ) =

T∑
t=1

D∑
d=1

d(zt,yd)δdt , (2)

2A Categorical Distribution is a multinomial distribution from which
only one sample is drawn. In our case that one sample per HMM state is
trained along an EM-like algorithm minimizing the accumulated KL diver-
gence between the reference categorical distributions and the posterior se-
quences used as acoustic features.

where the Kronecker delta δdt is defined as:

δdt =

{
1, if zt is associated with state qd

0, otherwise.

To associate each zt with one of the states, the HMM aligns the
phone class posterior probabilities Z with the states by minimizing
F(Z, Y ), given in (2).

Each zt is then used to update a particular categorical distribu-
tion yd. To minimizeF(Z, Y ) subject to

∑K
k=1 y

k
d = 1, we take the

partial derivative with respect to each variable ykd and set it to zero
to find the minimum. Then, we introduce the Lagrange multipliers
λ to enforce the sum to one constraint:

∂

∂ykd
F(Z, Y ) + λ

(
K∑

k=1

ykd − 1

)
= 0. (3)

Solving (3) yields:

ykd =
1

Td

∑
∀t∗

zkt . (4)

where the sum extends over all t∗ such that zt∗ is associated with
state qd and Td stands for the number of frames associated with state
qd.

2.3. KL-HMM decoding

During decoding, we aim at finding the optimal KL-HMM state se-
quence Q minimizing3:

FQ(Z, Y ) = min
Q

T∑
t=1

d(zt,yqt), (5)

whereQ = {q1, . . . , qT } stands for all possible state sequences and
yqt is the categorical distribution associated with qt, the KL-HMM
state at time t.

3. SPEAKER ADAPTIVE KL-HMM

Earlier studies have shown that KL-HMM performs extremely well
when only a small amount of training data is available [9]. Even
though it is not an adaptation technique, the categorical distribu-
tions are trained from scratch, it outperformed current state-of-the-
art adaptation techniques such as MLLR. However, if the amount
of data to train/adapt gets below a certain threshold, KL-HMM may
overfit. Therefore, we introduce the concept of speaker adaptive KL-
HMM in this section.

We assume to have a generic KL-HMM system with the cat-
egorical distributions Y = {y1, . . . ,yD} trained as described in
Section 2.2. Furthermore, we suppose to have a small amount
of speaker-specific adaptation data Xs = {xs

1, . . . ,x
s
N}. Given

the speaker-specific data Xs, we can generate posterior features
Zs = {zs

1, . . . ,z
s
N} by using the same speaker-independent MLP

as in Section 2.1.
The posterior featuresZs can then be used to train a speaker spe-

cific KL-HMM with categorical distributions Y s = {ys
1, . . . ,y

s
D}

along the same procedure as described in Section 2.2. For the
speaker-specific KL-HMM training, we use the generic categorical
distributions Y as seed models (i.e. initialization: Y s = Y ). Due to

3For the sake of simplicity, the transition probabilities aqt−1qt are omit-
ted in (5) because they are considered to be equal and fixed.
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Language Vocabulary Number Perplexities
size of bigrams DEV TST

French 12,035 1.5 M 147 152
German 16,727 1.9 M 295 360

Table 1. Statistics of the monolingual language models.

the small amount of adaptation data, we expect the speaker-specific
KL-HMM parameters Y s to overfit. To overcome that problem, we
eventually combine the generic Y and the speaker specific Y s on the
state-level:

yadaptive
d = αyd + (1− α)ys

d (6)

where yadaptive
d stands for the categorical distribution of the speaker

adaptive KL-HMM and α ∈ [0, 1] is a parameter of the combination.

4. EXPERIMENTS AND RESULTS

In this section, we evaluate the speaker adaptive KL-HMM and com-
pare it to the standard KL-HMM, a conventional HMM/GMM sys-
tem and MLLR.

4.1. Data

For our studies, we used the French part of the MediaParl
database [6]. MediaParl is a Swiss accented bilingual database con-
taining recordings in both French and German as they are spoken
in Switzerland. The data were recorded at the Valais Parliament.
Valais is a bilingual Swiss state with many local accents and di-
alects. Therefore, the database contains data with high variability
and is suitable to study multilingual, accented and non-native speech
recognition.

The MediaParl database contains a dictionary with all the words
(no out of vocabulary words) and standardized training, development
and test sets. The bigram language model (see Table 1) was trained
on two sources: the transcriptions of the training set and texts from
the corpus Europarl, a multilingual corpus of European Parliament
proceedings [10]. Europarl is made up of about 50 million words for
each language and is used to overcome data sparsity of the MediaParl
texts. However, vocabularies were limited to the sole words from
MediaParl.

The test set, shown in Table 2, contains all the seven speakers
that speak in both languages. In this paper, we study fast speaker
adaptation (minutes of data for each speaker) on the French part
of the data. Speaker 059 is discarded because a couple of French
phonemes are not pronounced at all. For all the other speakers, we
randomly select five minutes of adaptation data (and exclude that
data from the test set). Only for speaker 079 (2 minutes of French
data in total) we use about half the data for adaptation and the other
half for testing.

4.2. Systems

For our study, we compare four systems: conventional HMM/GMM,
MLLR, KL-HMM and speaker adaptive KL-HMM.

4.2.1. HMM/GMM

For the standard HMM/GMM system, the adaptation data was not
used. We used the training data from the French MediaParl to train
a conventional crossword context-dependent speech recognizer from

Spkr Sent. in Adapt Test Sent. in Mother
ID French data [min] German tongue

059 31 - - 195 German
079 22 1 1 698 German
094 313 5 60 72 French
096 89 5 15 8 French
102 72 5 7 7 French
109 233 5 46 402 German
191 165 5 28 310 German

Total 925 26 157 1692

Table 2. MediaParl-TST: speakers using both languages form the
test set. For each speaker the number of French and German sen-
tences as well as the mother tongue is given.

39 Mel-Frequency Perceptual Linear Prediction (MF-PLP) features
(C0-C12+∆+∆∆), extracted with the HTS variant [11] of the HTK
toolkit. Each triphone was modeled with three states and each state
was modeled with 16 Gaussians. To tie rare states, we applied a con-
ventional decision tree. The minimum description length criterion
was used to determine the number of tied states [12]. For decoding,
we used the bigram language model as described in Section 4.1.

4.2.2. Maximum likelihood linear regression

In an earlier study, we investigated MLLR as well as a constrained
version of it (CMLLR) to evaluate whether a new language could be
accommodated by linear transforms [8]. CMLLR has fewer parame-
ters and we assumed that this could be advantageous if we only have
access to a limited amount of data. However, even if we only used
5 minutes of adaptation data, MLLR outperformed CMLLR. There-
fore, in this study, we only investigated standard MLLR . For this,
we used the adaptation data described in Table 2 to perform speaker
adaptation and employed a regression tree that allowed up to 16 re-
gression classes.

4.2.3. KL-HMM

For the standard KL-HMM system, we first trained an MLP from the
39 MF-PLP features (see Section 4.2.1) in a nine frame temporal-
context (four preceding and following frames). The number of pa-
rameters in the MLP was set to 10% of the number of available train-
ing frames, to avoid overfitting. We used Quicknet [13] software to
train the MLP.

The MLP was trained on triphone targets. To obtain triphone
targets, we used the HMM/GMM system presented in Section 4.2.1
with a modified decision tree. As described by [12], the MDL crite-
rion has a hyper-parameter, c, which controls the weight of the term
that penalizes models with large amounts of tied states. For the tri-
phone target creation, we used c = 16 to obtain 659 tied states, used
as MLP targets. Then we used all the French MediaParl training
data to train a crossword context-dependent KL-HMM based speech
recognizer. Similar to the HMM/GMM system, we did not use the
adaptation data and we tied rare states by applying decision tree clus-
tering reformulated as dictated by the KL criterion [9]. For decoding,
we used the bigram language model as described in Section 4.1.

4.2.4. Speaker adaptive KL-HMM

The speaker adaptive KL-HMM was trained as described in Sec-
tion 3. As seed models, we used the KL-HMM system presented in
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Section 4.2.3. In Section 4.3.1, we discuss the choice of α.

4.3. Results

In this section, we first investigate the choice of the parameter α
for the speaker adaptive KL-HMM and then we compare the four
systems described in Section 4.2 against each other.

4.3.1. Tuning of the parameter α

Figure 2 shows the influence of the parameter α. If α is set to one,
the speaker adaptive KL-HMM is equivalent to the standard KL-
HMM. For each speaker, there is at least one α value for which
the performance of the speaker adaptive KL-HMM is better than
the performance of the standard KL-HMM. However, we also see
that for some values of α, the performance decreases. It can clearly
be seen that α-values close to zero perform bad in general, i.e. the
adapted KL-HMM system overfits. The highest performance gains
can be seen for two non-native speakers 4 (079 and 191). The French
HMM/GMM baseline system reported in [6] performed particularly
bad on theses two speakers, hence they seem to have a strong accent.

In the remainder of this paper, we will use the best performing
α value that we found for each speaker (on the test set). In future,
we will investigate how to automatically tune α.
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Fig. 2. Tuning of the parameter α: the performance of the speaker
adaptive KL-HMM is compared with the standard KL-HMM per-
formance (y-axis shows relative performance change). Each curve
represents one speaker. Red curves represent native speakers and
blue curves stand for non-native speakers.

4.3.2. System comparison

In Figure 3, the performance of a conventional HMM/GMM sys-
tem, MLLR, KL-HMM and speaker adaptive KL-HMM are com-
pared. On the left and on the right, the performance on native
and non-native speech, respectively, is shown. Blue bars represent
HMM based systems (Standard=HMM/GMM, Adapt=MLLR) and
red bars represent KL-HMM based systems (Standard=KL-HMM,
Adapt=speaker adaptive KL-HMM). At a first glance, we observe

4We consider a speaker as a non-native French speaker if there were more
German than French sentences recorded (see Table 2).

that for native speech, the HMM/GMM based systems perform bet-
ter and for non-native speech, the KL-HMM based systems perform
better. If we have a closer look, we can distinguish four different
cases:
• Standard on native speech: the HMM/GMM system performs

significantly better than the KL-HMM system
• Adapt on native speech: there is no significant difference be-

tween the MLLR and the speaker adaptive KL-HMM system
• Standard on non-native speech: there is no significant differ-

ence between the HMM/GMM and the KL-HMM system
• Adapt on non-native speech: the speaker adaptive KL-HMM

performs significantly better than MLLR
For the significance test, we used the bootstrap estimation method
[14] and a confidence interval of 99%. Overall, the speaker adaptive
KL-HMM system performs best.
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Fig. 3. Comparison of the four systems described in Section 4.2.
The left and right plot shows word accuracies on native and non-
native speech, respectively. Standard stands for HMM/GMM and
KL-HMM (not used the adaptation data) and adapt stands for MLLR
and speaker adaptive KL-HMM (used the adaptation data).

5. CONCLUSION

In this paper, we introduced a speaker adaptation approach for KL-
HMM. Fast speaker adaptation is achieved by exploiting the parsi-
monious use of parameters of KL-HMM that efficiently uses very
limited amounts of training data. Reference KL-HMM categorical
distributions are then expressed as a linear function between phone
posteriors estimated on large amounts of speaker-independent train-
ing data, and speaker-specific phone posteriors obtained on very
limited amount of speaker-specific adaptation data. On non-native
Swiss French data, the speaker adaptive KL-HMM has been shown
to significantly outperform MLLR. On native speech, speaker adap-
tive KL-HMM still yields similar performance than MLLR.

In future, we plan to use large amounts of multilingual speaker-
independent training data and expect further improvements. We will
also investigate how the parameter of speaker adaptive KL-HMM,
α, can automatically be tuned.
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