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ABSTRACT

In this paper, we propose a new temporal filter design method
based on minimum KL divergence criterion for robust recognition of
noisy and reverberant speech. The main idea is to optimize the filter
parameters by minimizing the KL divergence of two distributions,
of which one is the feature distribution in the test environment, and
another is the feature distribution represented by the acoustic model.
The minimization of the KL divergence reduces the mismatch be-
tween the acoustic model and the test data. Experimental results
on Aurora-5 task shows that the new filter design outperforms other
filter design methods significantly in noisy and reverberant test con-
ditions. In addition, the proposed filtering of feature trajectories is
shown to be complementary to linear transformation of feature vec-
tors, which is popular in feature processing.

Index Terms— Temporal filtering, feature transform, robust
ASR, reverberation, KL divergence.

1. INTRODUCTION

Robust speech recognition in adverse environments is one of the
challenges in automatic speech recognition (ASR) research. ASR
systems trained on clean speech data usually perform poorly on
noisy and/or reverberant speech. There are two major approaches to
improve the robustness of ASR. One is called feature space approach
(e.g. [1, 2, 3]) which reduces noise and reverberation effects in the
speech features before the recognition, and the other is called model
adaptation approach (e.g. [4, 5, 6]) which focuses on adapting the
acoustic model’s parameters to fit the test environment better. Al-
though model space techniques are usually more powerful, feature
space techniques are more efficient and easier to be integrated to
existing ASR systems, as they usually do not require modification
to the acoustic model and decoder.

There are two major ways to process speech features for robust
speech recognition, one is the linear transformation of individual fea-
ture vectors, and the other is the temporal filtering of feature trajec-
tories. A widely used linear transform is the constrained maximum
likelihood linear regression (CMLLR) method [4]. Although CM-
LLR is a model space technique, it is often implemented as feature
space transforms for better efficiency [4, 7]. It is noted that CM-
LLR is effective in reducing additive noises effects and speaker vari-
ations. Examples of temporal filters include RASTA [8], MVA pro-
cessing [9], data-driven filters [10], and temporal structure normal-
ization (TSN) [11]. Compared to linear transformation of individual
feature vectors, one advantage of temporal filters is their ability to
modify the temporal characteristics of feature trajectories. There-

fore, temporal filters may be more suitable to deal with distortions
that affect the long term temporal structure of features, e.g. rever-
beration. Temporal filters are reported to be effective in dealing with
both additive noise [8, 10, 11] and reverberation [12, 13, 14].

A limitation of the conventional temporal filters is that their de-
sign criteria do not make use of the clean feature distribution cap-
tured by acoustic model. Recently, clean feature distribution is used
in the optimization of temporal filters. In [13, 14], a Gaussian mix-
ture model (GMM) trained from clean features is used to guide the
filter estimation by using a maximum likelihood (ML) criterion. Un-
fortunately this method is not well grounded mathematically, i.e. the
scaling of feature space is not considered in the ML criterion. In
[14], this problem is alleviated by normalizing the variances of fil-
tered features. In [13], a temporal normalization term similar to TSN
is used as regularization. However, both approaches are not optimal.

In this paper, we consider the design of temporal filters by us-
ing rich clean feature distribution represented by the acoustic model.
To address the feature scaling problem in ML estimation, we pro-
pose a new objective function which aims at minimizing KL diver-
gence. The filter designed from the new criterion is called maximum
normalized likelihood linear filtering (MNLLF). We will also study
whether temporal filter MNLLF is complementary to linear trans-
form CMLLR as they are different ways of linear feature processing.

The paper is organized as follows. In section 2, the KL diver-
gence based filter design is proposed. In section 3, the proposed
filter is compared with other filters. In addition, the interactions be-
tween linear filtering and linear transformation is studied. Finally,
we conclude in section 4.

2. FILTER DESIGN BY MINIMUM KL DIVERGENCE

2.1. Background

Assume that we have an acoustic model with parameters Λm which
are trained from clean speech data. The feature distribution repre-
sented by the model is pm(x|Λm), where the subscript m denotes
‘model distribution’ and x is a feature vector. In many applications,
we want to use the model to recognize utterances from noisy acous-
tic conditions. The recognition performance is poor as the distribu-
tion pm(x|Λm) learnt from clean data does not represent the feature
distribution of the test environment well. Such problem is called
training-test mismatch problem. To reduce the mismatch, we can ei-
ther move the features closer to the acoustic model (by using feature
space techniques), or move the acoustic model closer to the test fea-
tures (by using model space techniques), or both. In this paper, we
focus on adapting the features towards the acoustic model.
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2.2. Problem of Maximum Likelihood Criterion for Feature
Adaptation

A simple criterion of adapting the features to fit the acoustic model is
to maximize the likelihood of the adapted features on the model. Let
X = [x1, ..., xT ]T where xt is the D dimensional test feature vector
for frame t and T is the number of test feature vectors. The adapted
features will be Y = f(X), where Y = [y1, ..., yT ]T and f(·) repre-
sents the transformation function. The log likelihood of the adapted
features on the model is logpm(Y|Λm) =

∑T
t=1 log(yt|Λm) if we

assume that the acoustic model does not consider the correlation be-
tween frames. The adaptation based on maximizing logpm(Y|Λm)
w.r.t. f(·) is problematic. Our experimental study shows that the
adapted features usually have much smaller variances than the orig-
inal features, leading to very bad recognition performance. This is
because the scaling of feature space by the transformation f(·) is not
taken into consideration in the likelihood function logpm(Y|Λm).
In previous feature space processing methods that also maximize
logpm(Y|Λm), this problem is alleviated by either renormalizing
the adapted features’ variances [14] or using a regularization term
[15][13]. In this paper, we will propose a new filter design criterion
that takes into consideration the feature scaling.

2.3. Minimum KL Divergence Criterion for Feature Adaptation

To address the problem of the pure ML criterion for feature adap-
tation, we propose a new design criterion based on the concept of
minimizing the KL divergence between the acoustic model distribu-
tion and the test data’s distribution.

Let’s assume that px(x) is the unobserved feature distribution
for the test environment. The mismatch problem can be explained as
the difference between the model distribution pm(x|Λm) and the test
data distribution px(x). To minimize the mismatch, we can minimize
the Kullback-Leibler divergence (KL divergence) between the two
distributions. One definition of the KL divergence is [16]:

D(px||pm) =

∫
px(x) log

px(x)

pm(x|Λm)
dx (1)

where the integration is evaluated over the test feature space. When
the KL divergence is minimized (through either feature processing
or model adaptation), the model and data distributions will be closer
to each other, and the model-data mismatch will be reduced.

In practice, the data distribution is not observed completely.
What we observe is samples from the data distribution, i.e. T fea-
ture vectors of test utterances X. Hence, we approximates the KL
divergence in (1) as

D̂(px||pm) =

T∑
t=1

log
px(xt)

pm(xt|Λm)
(2)

Note that there are two major differences between the KL divergence
in (1) and its approximation in (2). One is that the integration over
the test feature space is changed to summation over test feature vec-
tors. Using the summation to approximate the integration is reason-
able if we assume that the test feature vectors in X are faithfully
sampled from the data distribution px(x). Another difference is that
the first px(x) term on the right of (1) disappears in (2). Again, this
is because if the test samples are drawn from px(x), the summation
implicitly takes into account the first px(x) term in (1). That is, there
are more test samples drawn from the region in the test feature space
where px(x) is high and vice versa. The equation (2) can also be

seen as a Monte Carlo [17] simulation of the KL divergence where
the random samples are the test feature vectors.

There are two ways to minimize the approximated KL diver-
gence in (2). One way is to modify the model parameters Λm to
increase pm(xt|Λm). As px(xt) is independent of Λm, maximizing
pm(xt|Λm) by tuning the acoustic model parameters will guarantee
the minimization of the approximated KL divergence. This is actu-
ally the case of many acoustic model adaptation techniques, such as
CMLLR [4]. Another way to minimize the approximated KL diver-
gence is to adapt the test features to minimize the following function:

D̂(py||pm) =

T∑
t=1

logpy(yt)−
T∑
t=1

log pm(yt|Λm) (3)

where py(yt) is the probability distribution of the processed features
and is different from px(xt) as the features are processed. The mini-
mization of equation (3) will increase the likelihood of the processed
features evaluated on the acoustic model, i.e. pm(yt|Λm). At the
same time, it will prevent the likelihood on data distribution py(yt)
from increasing too much. It will be clear in the following sections
that by using (3) for filter design, the scaling of feature space is taken
into consideration.

2.4. Feature Adaptation by Filtering Feature Trajectories

In this paper, we study the temporal filtering of feature trajectories.
The filtered feature vector is obtained as:

y
(d)
t =

L∑
τ=−L

w(d)
τ x

(d)
t+τ = w(d)x̃(d)

t (4)

where w(d) = [w
(d)
−L, ..., w

(d)
0 , ..., w

(d)
L ] is a 1×(2L+1) weight vec-

tor for the dth feature dimension. x̃(d)
t = [x

(d)
t−L, ..., x

(d)
t , ...x

(d)
t+L]T

is the input of the linear filter at frame t and dimension d. The fil-
tered feature vector at frame t is defined as yt = [y

(1)
t , ..., y

(D)
t ]T .

2.5. Filter Weights Estimation

The weight vectors will be obtained by minimizing the cost func-
tion in (3). There are two terms in (3), one is the data likelihood
py(yt) and the other is the acoustic model likelihood pm(yt|Λm).
The calculation of the acoustic model likelihood is straightforward,
while the calculation of the data likelihood is not so easy as we don’t
have py(yt). In this paper, we will approximate py(yt) by a single
Gaussian and estimate its mean and variances from the test data.

Assume the processed feature distribution py(yt) can be approx-
imated by a single Gaussian with diagonal covariance matrix as we
are working on weakly correlated cepstral features. Then we have

logpy(Y) = K − 1

2

T∑
t=1

D∑
d=1

(
log(σ(d)

y )2 − (y
(d)
t − µ

(d)
y )2

(σ
(d)
y )2

)
(5)

where K is a constant term not related to the filter weights, µ(d)
y and

(σ
(d)
y )2 are the mean and variance of the Gaussian for dimension d,

respectively. If we estimate the mean and variance of yt from the
test data, i.e. (σ

(d)
y )2 =

∑T
t=1(y

(d)
t − µ

(d)
y )2/T , it can be easily

seen that the term
∑T
t=1

(y
(d)
t −µ(d)

y )2

(σ
(d)
y )2

= T is a constant. Therefore,

the data log likelihood function is only a function of the variances of
the filtered features:

logpy(Y) = K′ − 1

2

T∑
t=1

D∑
d=1

log(σ(d)
y )2 (6)
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Substitute (6) into (3), the objective function can be rewritten as

D̂(pd||pm) = K′ − T

2

D∑
d=1

log(σ(d)
y )2 −

T∑
t=1

logpm(yt|Λm) (7)

From (7), it is clear that to minimize the KL divergence between
the data and model distributions, one should increase not only the
likelihood of the processed features on the acoustic model, i.e.
pm(yt|Λm), but also the variance of the processed features. Note
that this finding is not limited to temporal filtering, but also applica-
ble to any form of feature space transformation.

Motivated by (7), the filter weights can be estimated as

Ŵ = arg max
W

{
λT

2

D∑
d=1

log(σ(d)
y )2 − β

2

D∑
d=1

|w(d) − w(d)
0 |

2

+

T∑
t=1

logpm(yt|Λm)

}
(8)

where W = [(w(1))T , ..., (w(D))T ]T is the matrix of filter weights
for all feature dimensions. The L2 norm is for regularizing the
weight estimation when the test utterance is very short. w(d)

0 =
[0, ..., 0, 1, 0, ..., 0] is the initial weights, i.e. the weight correspond-
ing to the current frame is set to 1 and all rest weights are set to 0.
We also introduce λ to control the importance of the variance term
that comes from the data distribution. This is because we are using
an approximated data distribution rather than the true data distribu-
tion. Hence, the best weight for the variance term may be different
from 1. We call the proposed filter maximum normalized likelihood
linear filtering (MNLLF), as the variance term in (8) can be viewed
as a normalization of the likelihood term.

2.6. Solution of MNLLF Linear Filter Weights

First, let’s find the variances of the processed features. From (4), the
variance (σ

(d)
y )2 can be estimated from the test samples as

(σ(d)
y )2 =

1

T

T∑
t=1

(y
(d)
t − µ

(d)
y )2 = w(d)C(d)

x̃ (w(d))T (9)

where C(d)
x̃ = 1

T

∑
t(x̃(d)

t − µ̃(d)
x )(x̃(d)

t − µ̃(d)
x )T and µ̃(d)

x =
1
T

∑
t x̃(d)
t are the estimated covariance matrix and mean of origi-

nal features across frames for feature dimension d. It is clear that we
will need temporal information of the original features, represented
by the cross-frame covariance C(d)

x̃ , for estimating the variances of
filtered features.

To compute the acoustic model likelihood, we can either use
the hidden Markov model (HMM) of the acoustic model, or simply
a GMM. In this paper, we will use a GMM with M mixtures for
simplicity. The acoustic model likelihood score is:

logpm(yt|Λm) = log

M∑
m=1

cmN (yt;µm,Σm) (10)

where cm, µm, and Σm are the prior weight, mean vector, and di-
agonal covariance matrix of the mth Gaussian in the GMM.

As there is no closed form solution to the optimization problem
in (8), we will use gradient ascent algorithm to find the solution of

the weights iteratively. From (8-10), the gradient of w(d) is

∇(d)
w =

λT

2

∂w(d)C(d)
x̃ (w(d))T /∂w(d)

w(d)C(d)
x̃ (w(d))T

− β

2

∂|w(d) − w(d)
0 |2

∂w(d)

+

T∑
t=1

∑M
m=1 cmN (yt;µm,Σm)∑M
n=1 cnN (yt;µn,Σn)

∂N (yt;µm,Σm)

∂w(d)

=
λTw(d)C(d)

x̃

(σ
(d)
y )2

− β(w(d) − w(d)
0 )− w(d)G(d) + p(d)

(11)

where

G(d) =

T∑
t=1

M∑
m=1

γm(t)

(σ
(d)
m )2

x̃(d)
t (x̃(d)

t )T (12)

p(d) =

T∑
t=1

M∑
m=1

γm(t)µ
(d)
m

(σ
(d)
m )2

(x̃(d)
t )T (13)

and γm(t) =
cmN (yt;µm,Σm)∑M

m=1 cmN (yt;µm,Σm)
is the posterior probability of

mixture m given the current processed feature vector yt. The filter
weights are updated iteratively until convergence:

w(d)
i+1 = w(d)

i + α∇(d)
wi

(14)

where i is the iteration index, α is the learning rate, and ∇(d)
wi is the

gradient of the weight vector evaluated by using current weight esti-
mate w(d)

i in (11). Since the computing of G(d) and p(d) is compu-
tationally expensive, we only compute them once using the original
features. At each iteration, only (σ

(d)
y )2,∇(d)

w , and w(d) are updated
according to (9), (11), and (14).

3. EXPERIMENTS

3.1. Experimental Settings

The proposed filter is evaluated on the Aurora-5 connected English
digit string recognition benchmark task [18]. We focused on test
cases of “living room” and “office”, which are corrupted by both ad-
ditive noises and reverberation. Besides these artificially generated
test data, we also test on real meeting recordings, which were simul-
taneously recorded by 4 hands-free microphones and corrupted by
reverberation and a small amount of background noise. The acoustic
model training follows the standard clean-condition training config-
uration of Aurora-5 task. For details of these test cases and model
training, please refer to [18]. The raw speech features are the 39D
MFCC features, including c0-c12, and their first and second deriva-
tives. The features of each utterance are normalized first by mean
and variance normalization (MVN) [19] and then by TSN [11].

The TSN processed features are used as the input of the pro-
posed MNLLF, and also JSTN [13] and CMLLR [4]. In both MN-
LLF and JSTN filters, the GMM for filter design is obtained by pool-
ing the 716 Gaussians of the acoustic model. In CMLLR, the HMMs
of the acoustic model are used together with the initial hypothesis
produced by the step directly prior to CMLLR. The filter length of
JSTN and MNLLF are both 33 taps, hence there are 33 × 39 free
parameters. For CMLLR, there are 39× 2 and 39× 40 free param-
eters for the diagonal and full transforms, respectively. For MNLLF,
λ and β are empirically set to 0.6 and 30, respectively. The other
settings of JSTN is the same as that in [13]. Whenever MNLLF,
JSTN, or CMLLR are applied, the acoustic model trained from TSN
processed features are used to recognize the test sentences.
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Table 1. Recognition accuracy achieved by utterance based feature
processing on artificial noisy data. TSN is the preprocessing for
JSTN, MNLLF, and CMLLR (diagonal transform). The column de-
noted as “Combine” refers to the cascade of MNLLF and CMLLR.

SNR MVN TSN JSTN MNLLF CMLLR Combine

Clean 99.38 99.38 99.34 99.22 99.37 99.27

Office 93.86 94.26 96.18 96.66 95.32 96.83
Office 15dB 81.00 83.99 88.23 89.82 85.64 90.05
Office 10dB 68.79 75.61 79.78 82.72 76.76 82.78
Office 5dB 49.89 61.65 64.60 69.61 61.88 69.30

Office 0dB 28.17 41.69 42.06 48.53 40.27 47.46

Living 81.30 83.07 88.06 89.93 85.72 90.58
Living 15dB 62.62 68.62 75.59 79.58 70.62 80.02
Living 10dB 50.87 60.37 65.64 71.14 61.37 71.26
Living 5dB 35.76 48.77 50.78 57.72 48.53 57.31

Living 0dB 21.11 33.20 32.54 39.16 31.83 37.97

Avg 57.34 65.84 68.35 72.88 66.38 72.73

Table 2. Recognition accuracy achieved by utterance based feature
processing on the 4 microphone meeting data.

Mic. MVN TSN JSTN MNLLF CMLLR Combine

6 87.12 89.18 90.26 91.60 90.02 91.89
7 82.28 85.97 86.65 88.64 86.91 89.11
E 80.65 84.14 85.15 86.92 84.79 86.95
F 85.67 87.21 88.93 89.34 88.09 89.68

Avg 83.93 86.63 87.75 89.13 87.45 89.41

3.2. Utterance based processing

We first examine utterance based processing of speech features,
where linear filters and linear transforms are estimated based on
the information of a single utterance. The performance on artificial
test data and real meeting data are shown in Table 1 and Table 2,
respectively. From the two tables, it is observed that the proposed
MNLLF filter consistently outperforms previous filter design meth-
ods, i.e. TSN [11] and JSTN [13], except for clean test case. This
demonstrates the effectiveness of the proposed minimum KL diver-
gence objective function for temporal filter design. In addition, the
MNLLF outperforms CMLLR significantly. This is due to that: 1)
for CMLLR, we are forced to use simple diagonal transform as the
utterances are generally very short (0.5-3s); 2) CMLLR processes
each frame individually and is not effective in dealing with reverber-
ations. When we apply CMLLR after MNLLF (last column of the
tables), only a small gain is obtained for high SNR levels (>5dB).
This is contradictory to our expectation that MNLLF should be
complementary to CMLLR as they use different information. We
suspect that the small gain from combination is due to that the diag-
onal CMLLR transforms are too weak in per utterance processing.

3.3. Interactions between MNLLF and CMLLR in speaker
based processing

To investigate the full synergy between CMLLR and MNLLF, we
also study the speaker based processing of speech features, i.e. the
linear filters and transforms are optimized based on the information
of all utterances of a speaker. In this case, full transforms are used

Table 3. Recognition accuracy achieved by speaker based feature
processing on artificial noisy data.

SNR TSN MNLLF CMLLR Combine

Clean 99.38 99.35 99.57 99.57

Office 94.26 97.05 98.03 98.54
Office 15dB 83.99 90.49 92.88 95.11
Office 10dB 75.61 83.00 85.20 88.85
Office 5dB 61.65 68.79 69.94 75.05
Office 0dB 41.69 46.81 44.73 50.22

Living room 83.07 91.40 92.07 95.37
Living room 15dB 68.62 81.01 79.13 87.38
Living room 10dB 60.37 72.07 69.10 77.95
Living room 5dB 48.77 57.25 52.99 61.35
Living room 0dB 33.20 37.95 33.21 38.40

Avg 65.84 72.92 72.03 77.00

Table 4. Recognition accuracy achieved by speaker based feature
processing on meeting data.

Mic. TSN MNLLF CMLLR Combine

6 89.18 91.40 91.85 92.98
7 85.97 88.41 88.71 90.50
E 84.14 86.33 87.30 88.89
F 87.21 89.52 89.70 90.62

Avg 86.63 88.92 89.39 90.75

in CMLLR as there are enough test data from each speaker.
The performance of MNLLF, CMLLR, and their combination

are shown in Table 3 and Table 4. From the tables, it can be observed
that full transform CMLLR produces much better results than the
diagonal CMLLR transforms in Table 1 and Table 2. The full trans-
form CMLLR achieves similar performance as MNLLF. This could
be due to that CMLLR could reduce reverberation effects to a certain
degree via the dynamic features which capture temporal information
up to about 0.1s. On the other hand, the speaker based MNLLF does
not show much improvement over utterance based MNLLF. Possible
reason may be that in the speaker based MNLLF, the filters cannot
be optimized for each test utterance.

When MNLLF and CMLLR are applied in sequence, signifi-
cantly better performance is obtained than when they are applied
alone. From the results, it is clear that MNLLF and CMLLR are
complementary to each other. This is because the two methods use
different information, i.e. CMLLR uses short term temporal infor-
mation, while MNLLF uses long term temporal information.

4. CONCLUSIONS

In this paper, we proposed a novel temporal filter design method
for robust ASR, called MNLLF. The filter is designed to reduce the
training-test mismatch by minimizing the KL divergence of the two
distributions, i.e. the distribution of the filtered features and the dis-
tribution of the acoustic model. Experimental results on Aurora-
5 task show that MNLLF produces consistently better results than
previous temporal filters, such as TSN and JSTN. It is also shown
that the temporal filter MNLLF is complementary to the widely used
CMLLR, which is a linear transform of feature vectors.
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