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ABSTRACT

We investigate the use of iVector-based rapid adaptation for recog-
nition in mobile speech applications. We show that on this task, the
proposed approach has two merits over a linear-transform based ap-
proach. First it provides larger error reductions (11% vs. 6%) as it is
better suited for the short utterances and varied recording conditions.
Second it omits the need for speaker data pooling and/or clustering
and the very large infrastructure complexity that accompanies that.
Empirical results show that although the proposed utterance-based
training algorithm leads to large data fragmentation, the resulting
model re-estimation performs well. Our implementation within the
MapReduce framework allows processing of the large statistics that
this approach gives rise to when applied on a database of thousands
of hours.

Index Terms— iVectors, rapid adaptation, Eigenvoices, GMM

1. INTRODUCTION

Acoustic model adaptation has been shown to give significant er-
ror rate reductions of automatic speech recognition for numerous
large vocabulary transcription applications. A large number of the
algorithms still commonly used today were developed in light of the
DARPA Wall Street Journal read speech task [1, 2, 3, 4] but also
showed effective when focus shifted toward spontaneous speech like
the Broadcast News [5] and Switchboard [6] tasks.

The most widely used algorithms for adapting Hidden Markov
Models (HMMs) that use Gaussian Mixture Models (GMMs) are
Maximum A Posteriori (MAP) adaptation [7], Maximum Likeli-
hood Linear Regression (MLLR) adaptation [8, 9, 10] and Con-
strained Maximum Likelihood Linear Regression (CMLLR) adap-
tation [11, 12]. For all these techniques, a Speaker Independent (SI)
system is first used to get an initial transcript of the test data and
an association of the acoustic observations with the model param-
eters. Using that association, statistics can be gathered to compute
a Speaker Adapted (SA) setup. The various adaptation techniques
need to balance the amount of data available for adaptation param-
eter estimation with the adaptation model parameter set size. The
number of parameters in MAP adaptation can be as large as the
model itself whereas in MLLR/CMLLR the adaptation parameter
space is limited to one or more (possibly structured) linear trans-
forms [8, 13, 14]. This allows tailoring of the adaptation model to
the size of the adaptation data. However, when the adaptation sam-
ple becomes very small, the transform needs to be very constrained
and as a result the effectiveness of adaptation deteriorates.

In some applications, data pooling can be employed to gather
adaptation data for a speaker from multiple utterances. This is for
example common in Broadcast News transcription where multiple
speakers take turns within one recording, each turn frequently only a

very short utterance. Supervised speaker turns or unsupervised clus-
tering of utterances to find pooled speaker data for linear transform-
based adaptation was shown to be an effective adaptation approach
in that case [5].

Adaptation on very small adaptation samples directly is referred
to as rapid adaptation which received a large amount of attention un-
der the names Eigenvoices [15, 16, 17] and Cluster Adaptive Train-
ing (CAT) [18]. Common among these approaches is to form a sub-
space basis for the acoustic model at training time, requiring only
the computation of a position in that subspace at test time. Since the
subspace dimension is small, the amount of data required to estimate
the subspace position is small. Given that the different subspace
bases can represent varied subsets of the training data, they can dif-
fer significantly. Hence, even though the adaptation parameters are
parsimonious, it can have a large impact on the characteristics of the
model and hence provide large adaptation effectiveness.

More recently, the eigenvoice model has become popular in
speaker identification as well. There, the subspace coordinates
themselves are the focus as they have shown to be effective in char-
acterizing speaker identity [19]. In this field, the the framework is
known as iVector modeling.

In Eigenvoice modeling, training data pools for various train-
ing speakers (and/or recording conditions) are formed to estimate
the model subspace bases. Here the model bases are represented by
recognition GMMs. In contrast, in the iVector training, the model
bases are for a text-independent GMM which is generally signifi-
cantly smaller than a recognition GMM system. However, the iVec-
tor model interpolation parameters (the iVectors) are computed for
each utterance rather than per speaker (allowing within speaker nor-
malization using the resulting iVectors). Since the text independent
GMM is smaller, the iVector approach generally uses a larger sub-
space than Eigenvoice modeling.

In this work, the focus is applying adaptation in mobile speech
applications like our VoiceSearch application [20]. Applying adap-
tation in this domain is challenging not only because utterances are
very short but they are from a very large speaker population. Even
among the utterances from a given device, it is common to see a
wide variety of recording conditions as speech is input while on the
go. As such, it is hard to define data pools that are consistent in terms
of a speaker (and recording condition).

Experiments with linear transform-based adaptation on data
pooled per device (for a population of users that opted into allowing
us to use their data for adaptation experiments) showed a 6% rela-
tive error rate reduction, much smaller then commonly observed in
transcription [10]. Conjecture is that this poor performance is due
in part to inhomogeneity in the adaptation data and in part due to a
large variance in speaker data pool size (many speakers have only
very little data, some have a lot). Note that besides poor perfor-
mance, the approach of retaining aggregate transform statistics per
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device only for those users that opted into using adaptation requires
a large complex infrastructure of storing/updating/retrieving those
statistics.

In this work, we focus on using rapid adaptation. Such an ap-
proach addresses the inhomogeneity issues we observed in the de-
vice specific data and omits the infrastructure complexity related
to that approach. Given that even in training we cannot form con-
sistent speaker data pools like in the Eigenvoice approach, we will
treat each utterance as a different speaker/condition in both training
and test, ie. we use the iVector paradigm in training and test. Note
that this leads to a very large fragmentation (since we will have a
very large “number of speakers”) in the training phase potentially
making the estimation unstable and having practical ramifications in
the sense that the statistics required become large. The fact that the
recognition GMM used in this model is much larger than the text in-
dependent GMM used in speaker identification further exacerbates
this.

The rest of this paper is organized as follows. In section 2 we
briefly review the iVector-based model. In section 3 the implemen-
tation of the algorithm using the MapReduce framework [21] is de-
scribed. Section 4 described the experimental results obtained with
the proposed adaptation model. Finally section 5 summarizes the
results.

2. IVECTOR MODEL

Here we briefly summarize the Eigenvoice algorithm used in this
work. We closely follow the very concise write up in [17], and we
only summarize the results. Let M(i) denote the Nd dimensional
supervector for the i-th utterance obtained by stacking the d dimen-
sional mean vectors for allN components of the GMM. The adapted
mean relates to the SI GMM mean supervector M0 as

M(i) = M0 + V y(i), (1)

where V is a matrix encoding the bases of an R dimensional sub-
space as the columns of this Nd × R matrix. The R dimensional
y(i) vector is referred to as the iVector for the i-th utterance, signi-
fying a location in the subspace for the i-th utterance.

Let the acoustic observations for the i-th utterance be denoted as
X i = x1, x2, . . . , xLi with Li the number of observations in the i-
th utterance. Furthermore, lets define counts for mixture component
c

N i
c =

∑
x∈X i

P(c | µc,Σc, x) (2)

and
Si
c =

∑
x∈X i

P(c | µc,Σc, x)(x− µc) (3)

with µc and Σc the mean and covariance of the c-th GMM compo-
nent. Let N i denote the Nd × Nd block diagonal matrix with the
c-th block as N i

cI where I denotes a d × d identity matrix. Let Σ
denote the model supercovariance matrix structured likewise from
the component covariances. Let Si denotes the supervector obtained
by stacking the Si

c counts for all GMM components c.
The model assumes that the iVectors themselves are random

variables with a prior distribution assumed to be a zero-mean, unit
variance normal. This gives rise to a Bayesian model where the pos-
terior distribution of the iVectors given the SI GMM and acoustic
observations is itself distributed Gaussian with precision

l(i) = I + V T Σ−1N iV, (4)
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Fig. 1. Outline of the parallelism and data sizes used in the three
map-reductions that implement basis training.

(where the T superscript denotes transposition) and mean

a(i) = l(i)−1V T Σ−1Si. (5)

This readily provides the MAP iVector estimate for the i-th utterance
as a(i) and gives expectations

E [y(i)] = l(i)−1V T Σ−1Si (6)

E
[
y(i)y(i)T

]
= E [y(i)] E

[
y(i)T

]
+ l(i)−1. (7)

Given the posterior iVector distribution, an EM optimization can be
formulated to update the bases V so as to maximize data likelihood
by solving in the maximization step the system of linear equations∑

i∈O

N iV E
[
y(i)y(i)T

]
=

∑
i∈O

SiE [y(i)] , (8)

where O denotes the set of training utterances.
At test time, a SI system is used to get a first transcript for the ut-

terance which allows the computation of the statistics in Equation (2)
and (3) for the test data. These statistics allow the computation of the
MAP iVector estimate in Equation (5) which provides the SA model.

3. IVECTOR TRAINING IMPLEMENTATION

We implemented the iVector basis training using our MapRe-
duce [21] framework for parallelization. The framework allows
an input data set to be partitioned (sharded) across a number of
mappers. The user implements the map process what will process
the input shards in parallel. Each mapper can output records under a
key. Once mapping completes, the framework sorts the map outputs
(shuffling) and provides the outputs with matching keys to a user im-
plementation of a reduce process. If data was shuffeled for multiple
keys, the framework allows parallelism in the reduce phase as well.
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One iteration of the iVector basis optimization was implemented
as a series of three map-reductions as depicted in Figure 1. The pic-
ture outlines the parallelism and the total data size that is processed
by the series of map-reductions at the various stages. This process
might appear overly complex at first glance but it is important to real-
ize that with a large data set (in our experiments thousands of hours
of data) fragmented into a large number of utterances (millions in
our experiments), the set of utterance statistics is large.

In the first map-reduction, the mapper computes for each input
utterance the occupancies of Equations (2) and (3), then computes
the iVector expectations of Equations (6) and (7) and finally updates
accumulators for the left and righthand sides of Equation (8). This
is parallelized across map shards of utterances. Once a mapper fin-
ishes a map shard, it outputs the accumulators it collected. As can
be seen from Equation (8) the left and righthand sides are V -sized
matrices, ie. the GMM means times the subspace dimension. For
the model used in the experiments (see section 4) and a subspace di-
mension of 32, this amounts to about 380MB. In addition, to handle a
large training set (in our experiments we used about 2000 hours), one
would need utterance parallelism to process the data in a reasonable
amount of time. In our experiments, we used about 2000 map shards
and used 2000 machines for the first map-reduction leading to an ag-
gregate output size of about 1TB. In order to facilitate counts of this
size, we output the accumulators in fragments, outputting the rows
of the accumulators for a particular GMM state under the state name
key. The reducer of the first map reduction uses an IdentityReducer
writing the keyed gathered accumulator counts to disk unaltered.

In the second map reduction the accumulator counts of the first
are read in the map processes. These processes see numerous ac-
cumulators for a given state name key that were computed in the
various mappers of the first map-reduction. The map processes of
this second map reduction sum the accumulators of a particular state
name key and output the sum again under the state name key. After
this summation, the aggregate data size is reduced to the size of the
left and righthand sides of Equation (8), ie. two times the size of V
or, for the example given, about 380MB. This second map-reduction
also uses an IdentityReducer to output the summed accumulators to
disk.

Finally, in the third map-reduction, the map processes read in
the summed accumulators of the second map-reduction (now one per
GMM state key) and output these accumulators under a single key
to bring all the summed counts together into a single reduce process.
This reduce process takes the summed accumulators from all states,
assembles the total accumulator sums from Equation (8) and solves
for the updated bases V .

To allow evaluation of various subspace sizes and to aid in ini-
tialization of the basis vectors, we implemented a stage-wise sub-
space dimension increase. Once we obtain a k-dimensional basis
from EM training, we obtain added subspace dimensions by taking a
random direction and projecting that direction on an orthogonal ba-
sis direction by use of QR factorization of the newly formed basis.
We repeat this process for the bases of each GMM state in V for
bases up to the vector dimensionality. If a larger subspace dimen-
sion is desired, initialization is obtained by taking permutations of
the state specific basis vectors obtained so far.

4. EXPERIMENTAL RESULTS

Experiments were conducted on a database of mobile speech record-
ings originating from a number of mobile speech applications: voice
search, translation and the voice-based input method used on An-
droid phones. These recordings are anonymized; we only retain the
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Fig. 2. Average log-likelihood per frame for the iVector basis train-
ing.

speech recording but remove all infromation indicating which device
recorded the data. The training set consists of a sampling of those
recordings and consists of 2421558 utterances containing about 1967
hours of speech. A single model is used in evaluations but we use
four test sets, one for each application and one (Unified 1A) that
contains data sampled uniformly from the join of all applications
(emphasizing the use frequency of each application). Each test set
contains about 20000 utterances or about 20 hours of speech.

For the GMM system used in these experiments, we trained a
decision tree-based tied-state triphone model with 2284 state distri-
butions. For each state, emissions were modeled by GMM distribu-
tions where the number of components were chosen commensurate
to the amount of data that was available for the state resulting in a
model with 38121 mixture components. This is significantly larger
than the 1024 component text independent Gaussian mixture model
commonly used in iVector modeling. We used a 39 dimensional
LDA+STC feature space computed from 9 consecutive 13 dimen-
sional PLP cepstral vectors. Note that for the subspace models, each
added subspace dimension adds a set of 38121 mean vectors. Hence,
for the 32-component model used in some of these experiments, the
final model size is about 290MB.

Figure 2 shows the average log-likelihood per frame throughout
the basis training of the iVector model. The subspace dimension of
the model was trained in stages initializing a larger model using the
algorithm detailed in section 3. For each size, four EM iterations
were run to estimate the bases. The E-step ivector computation and
statistics summation were run on 2000 machines for the larger com-
plexity model. For the 32-dimension model, this leads to about 1TB
of data resulting from the first E-step map-reduction. For that model
complexity, the training iterations took about an hour each.

Figure 3 shows the error rate of the iVector adapted model as
function of the subspace dimension on the four test sets. Adaptation
shows relative error rate reductions ranging from about 8% on the
search task to about 11% on the sampled Unified 1A test set. The
results show that performance gains peak for all tests when using
a subspace dimension of about 28. Note that in contrast to linear
transform adaptation, the proposed iVector adaptation uses no data
beside the short utterances (about 4 seconds on average) and requires
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Fig. 3. Word error rates on various test sets as a function of the subspace dimension of the iVector model.

no data pooling or other metadata.

5. CONCLUSIONS

The proposed iVector-based rapid adaptation algorithm shows merit
for use in mobile speech applications. Not only does it show better
adaptation performance than the linear transform-based approach, it
also alleviates the need for device-based statistics aggregation and/or
clustering.

The empirical evidence shows that the algorithm appears to scale
to use of a large speech recognition GMM (relative to the text inde-
pendent GMM generally used iVector modeling). Although some
attention needs to be paid to making the sizable statistic summation
practical, our use of the MapReduce framework seems to success-
fully address this as it allowed us to train a 32-dimensional subspace
model on the millions of utterances in the 2000 hour training set.
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