
FEATURE SPACE VARIATIONAL BAYESIAN LINEAR REGRESSION
AND ITS COMBINATION WITH MODEL SPACE VBLR

Seong-Jun Hahm∗ , Atsunori Ogawa, Marc Delcroix, Masakiyo Fujimoto,
Takaaki Hori, and Atsushi Nakamura

NTT Communication Science Laboratories, NTT Corporation, Kyoto, 619-0237, Japan
{seongjun.hahm, ogawa.atsunori, marc.delcroix, fujimoto.masakiyo, hori.t, nakamura.atsushi}@lab.ntt.co.jp

ABSTRACT

In this paper, we propose a tuning-free Bayesian linear regression
approach for speaker adaptation. We first formulate feature space
variational Bayesian linear regression (fVBLR). Using a lower
bound as the objective function, we can optimize a binary tree
structure and control parameters for prior density scaling. We exper-
imentally verified the proposed fVBLR could achieve performance
comparable to that of the conventional fine-tuned fSMAPLR and
SMAPLR. For further performance improvement regardless of the
amount of adaptation data, we combine fVBLR with model space
VBLR (fVBLR+VBLR). Therefore, feature space normalization
and model space adaptation are consistently performed based on a
variational Bayesian approach without any tuning parameters. In
the experiment, the proposed fVBLR+VBLR showed performance
improvement compared with both fVBLR and VBLR.

Index Terms— speaker adaptation, fSMAPLR, SMAPLR,
fVBLR, VBLR

1. INTRODUCTION

Linear regression approaches, such as maximum likelihood linear
regression (MLLR), have been widely used for speaker adaptation
[1–8]. To achieve effective linear regression, a binary tree structure
of Gaussian clusters was proposed [1]. Using the binary tree struc-
ture that is optimized with the appropriate occupancy threshold, esti-
mation of the transformation matrix is effectively performed regard-
less of the amount of adaptation data. However, for small amount
of adaptation data, the performance of MLLR drops severely. Maxi-
mum a posteriori linear regression (MAPLR) was proposed to stabi-
lize estimation of transformation matrix especially for small amount
of adaptation data by incorporating prior distribution [5].

The prior distributions can be obtained from the parent nodes
in a binary tree structure [6–9]. These methods include struc-
tural maximum a posteriori linear regression (SMAPLR) [6] and
feature space SMAPLR (fSMAPLR, also known as Constrained
SMAPLR;CSMAPLR) [8]. The above mentioned MAP-based lin-
ear regression approaches set the occupancy threshold for the tree
structure and the control parameter that controls the contribution of
the prior density (i.e., transformation matrix of the parent node in
a binary tree). These two parameters are usually determined em-
pirically using the development set [6, 10]. Furthermore, once the
control parameter is set, every node uses the same control parameter
for scaling prior distribution (see Fig. 1(a) in Section 4.2). Using
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this control parameter, we cannot appropriately control the contri-
bution of the prior distribution of each node because the amount of
adaptation data assigned to each node is different from node to node.

To solve these problems in parameter tuning, VBLR approach
has recently been proposed as a tuning-free SMAPLR approach [11].
VBLR is a fully Bayesian treatment of linear regression for hidden
Markov models (HMMs). VBLR analytically derives the variational
lower bound of the marginalized log-likelihood (evidence). By using
the variational lower bound as an objective function, we can opti-
mize the tree structure and control parameter of the linear regression
without controlling them as tuning parameters. The tree structure
is automatically determined according to the amount of adaptation
data1 and we can determine the appropriate control parameters for
scaling the prior of each node separately.

In this work, we expand the VBLR approach to feature space.
We formulate a feature space VBLR approach (fVBLR; Section 2)
that has all the advantages of model space VBLR (Section 3). We
also use the obtained lower bound as the objective function (Section
2.3). Using the lower bound, we can optimize the tree structure and
control parameters for prior density scaling (Section 2.4). For further
performance improvement regardless of the amount of adaptation
data, we combine fVBLR and model space VBLR (fVBLR+VBLR).
This approach is an extension of our previous approach that employs
MAP-based adaptation [13]. We also demonstrated the effective-
ness of combination of fSMAPLR and model space VBLR [14]. In
this paper, we evaluate the effectiveness of the proposed methods
(fVBLR, fVBLR+VBLR) for speaker adaptation for a large vocabu-
lary speech recognition (Section 4).

2. FEATURE SPACE VARIATIONAL BAYESIAN LINEAR
REGRESSION

Variational Bayesian approaches estimate the entire posterior dis-
tribution of the parameters and latent variables than a single most
probable value (point estimation) for generalizing MAP-based ap-
proaches. In this section, we formulate feature space variational
Bayesian linear regression (fVBLR). In the model space VBLR [11],
the variational lower bound is analytically derived by using conju-
gate distributions as prior distributions, and by assuming the condi-
tional independence on the posterior distributions. The marginalized
log-likelihood with a set of hyperparameters Ψ and a model (tree)
structure m is represented by

ln p(O|Ψ,m)

= ln

∫
q(W ,S)

p(O,S,W |Ψ,m)

q(W ,S)
dW dS,

(1)

1Using VB approach, model structure itself can also be estimated [12]. In
this paper, we only determined the depth of the tree based on lower bound.
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where O is the feature vector set, W is the extended feature space
transformation matrix, and S represents the sequences of HMM
states and mixture components of Gaussian mixture models. Instead
of direct simplification of the above marginal log-likelihood, we
constrain the posterior to be a simpler, factorized approximation
q(W ,S) ≈ q(W )q(S) [15].

The lower bound of the marginalized likelihood is represented
by using Jensens inequality

ln p(O|Ψ,m)

= ln

∫
q(W )q(S)

p(O,S|W )p(W )

q(W )q(S)
dW dS

≥
〈

ln
p(O,S|W )p(W )

q(W )q(S)

〉
q(W )
q(S)︸ ︷︷ ︸

,G(Φ,m)

,
(2)

where p(W ) is a prior distribution of W , and q(W ) and q(S) are
arbitrary distributions. In the above equations (1) and (2), we omitted
Ψ,m in p(W |Ψ,m), q(W |Ψ,m), and q(S|Ψ,m) for simplicity.

The variational lower bound defined in Eq. (2) can be decom-
posed as follows:

G(Ψ,m) =

〈
ln
p(O,S|W )p(W )

q(W )

〉
q(W )
q(S)︸ ︷︷ ︸

,L(Ψ,m)

−〈ln q(S)〉q (S).

(3)
From Eq. (3), we can take only the first logarithmic evidence term
for Ψ and m because the second term does not depend on the trans-
formation matrix W . Considering the conditional independence
assumption over cluster r, node (cluster) index of the binary tree,
L(Ψ,m) can be represented by

L(Ψ,m) =
∑
r

〈
ln
p(O,S|Wr)p(Wr)

q(Wr)

〉
q(Wr)
q(S)

. (4)

2.1. Conjugate distribution for prior distribution

Similar to model space VBLR, fVBLR also adopts the conjugate dis-
tributions as prior distributions to obtain an analytical solution. The
matrix normal distribution (prior distribution) is defined as follows:

p(W ) ∝ N (W |C,Φ,V )

=
∏
r

exp
{
− 1

2
tr
[
V −1
r (Wr −Cr)′Φ−1(Wr −Cr)

]}
(2π)n(n+1)/2|Vr|n/2|Φ|(n+1)/2

,
(5)

where C, V , and Φ are the hyperparameters for that distribution
family. C is the n × (n + 1) location matrix and V is the (n +
1) × (n + 1) scaling matrix. To obtain a simple solution for the
final analytical solution, we set the following constraints on Φ and
Vr [5, 7, 11]:

Φ ≈ In
Vr ≈ ρ−1

r In+1

, (6)

where In is an n×n identity matrix and ρr indicates a feature space
control parameter.

By substituting Eq. (6) into Eq. (5), we obtain the following:

N (Wr|Cr, In, ρ−1
r In+1)

=
( ρr

2π

)n(n+1)
2

exp

(
−1

2
tr
[
ρr(Wr −Cr)′(Wr −Cr)

])
.

(7)

2.2. Posterior distribution of transformation matrix

From the variational calculation for G(Ψ,m) with respect to q(Wr),
we obtain the following posterior distribution [11]:

q̃(Wr) ∝ p(Wr) exp
(
〈O,S|Wr〉q(S)

)
. (8)

After expectation with respect to q(S), we can obtain the following
expression:

q̃(Wr) ∝ p(Wr|Cr,Vr)

exp

{∑
t,u∈r

γu(t) (lnN (Wrξ(t))|µu,Σu) + ln |Ar|

}
,

(9)

where Wr = [ br Ar ] is the n × (n + 1) extended transforma-
tion matrix, which is composed of the n × 1 bias term br and the
n × n transformation matrix Ar , γu(t) is the posterior probabil-
ity of being in the u-th Gaussian mixture component at frame t,
ξ(t) = [ 1 o(t)′ ] is the (n+1)×1 extended observation vector, and
µu and Σu are the mean vector and covariance matrix for Gaussian
component u, respectively. Here we use Gaussian component u only
in the specific node r (u ∈ r).

The above equation has the same form as the auxiliary Q-
function of fSMAPLR [8]2. In fSMAPLR, the transformed feature
vector ô(t) is represented by

ô(t) = Aro(t) + br = Wrξ(t), (10)

where o(t) represents an n× 1 speech feature vector at frame t.
Since the VBLR approach is based on hierarchical prior setting,

we need to define the hyperparameters for a specific node, namely

Cr =

{
[0′n In] if r is root node
Wr(p) otherwise ,

Vr = ρ−1
r In+1.

(11)

where r(p) denotes the parent node of the r-th node. Generally,
an identity transformation matrix is used as the initial prior for the
root node [6, 8, 11]. Here ρ−1

r depends on each node different from
ρ of fSMAPLR. Because in the fSMAPLR, only one ρ is used for
the entire tree structure. We note that one of the advantages of the
proposed method is that the control parameters ρr can be optimized
automatically for each node independently without using the heuris-
tic rule [9].

By substituting Eq. (5) into Eq. (9) and taking the logarithm of
Eq. (9), Eq. (9) can be rewritten as

ln q̃(Wr)

∝− 1

2
tr
[
ρrW

′
rWr +W ′

rWrG
(i)
r − 2ρrW

′
rCr

−2W ′
rk

(i)
r

]
+ βr ln |Ar|

=− 1

2
tr
[
W ′

rWr(ρrIn+1 +G(i)
r )− 2W ′

r(ρrCr + k(i)
r )
]

+ βr ln |Ar|,
(12)

where we disregarded the terms that do not depend onWr . And the
2nd and 1st order statistics ofG(i)

r and k(i)
r are calculated by

2We can use the predictive distribution to estimate the transformation ma-
trix. In this paper, we use point estimation by fSMAPLR approach because
we verified that the obtained results are the same as fSMAPLR.
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G(i)
r =

∑
u∈r

1

σ
(i)2
u

T∑
t=1

γu(t)ξ(t)ξ(t)′, (13)

k(i)
r =

∑
u∈r

1

σ
(i)2
u

µ(i)
u

T∑
t=1

γu(t)ξ(t)′, (14)

where µ(i)
u is the i-th mean of µu and σ(i)

u is the i-th diagonal com-
ponent of Σu.

The optimization of Eq. (9) can be performed by using row-
by-row iterative estimation [4]. The i-th row of the transformation
matrixWr is calculated by

wri =
(
αpi + k̃(i)

r

)(
G̃(i)
r

)−1

, (15)

where α is the solution of a simple quadratic equation that maxi-
mizes Eq. (9) and pi is the extended cofactor row vector, [ 0 cof(Ai1)

. . . cof(Ain) ]. And the statistics G̃(i)
r and k̃(i)

r smoothed by the
prior distribution are represented by

G̃(i)
r = ρrIn+1 +G(i)

r ,

k̃(i)
r = ρrcri + k(i)

r ,
(16)

where cri is the i-th row of the location matrixCr .
Finally, by defining the following matrix variables,

Ṽr =
(
ρrIn+1 +G(i)

r

)−1

, (17)

c̃ri =
(
ρrcri + k(i)

r

)
Ṽr, (18)

we can obtain posterior distribution ofWr analytically as follows:

q̃(Wr) = N (Wr|C̃r, In, Ṽr)

= (2π)−
n(n+1)

2 |Ṽr|−
n
2

exp

(
−1

2
tr
[
(Wr − C̃r)′(Wr − C̃r)Ṽ −1

r

])
.

(19)

As already explained, the posterior distribution also becomes a ma-
trix normal distribution.

2.3. Variational lower bound

Finally, after taking the expectation of Eq. (4) with respect to q(S),
we can obtain the following equation, which provides an analytical
result for the lower bound [11]:

L(Ψ,m)

=
∑
r

〈
ln
p(O,S|Wr)

γu(t)p(Wr|Cr,Vr)
q(Wr)

〉
q(S)

∝ n

2
ln |V −1

r |+
n

2
ln |Ṽr| −

1

2
tr
[
C′rCrVr − C̃′rC̃rṼ −1

r

]
.

(20)
In this equation, the term ln |Ar| is cancelled out because both
p(O,S|Wr)

γu(t) and ln q̃(Wr) have the same terms with opposite
signs. Finally, fVBLR and VBLR have the similar form and the
only difference between the feature space and model space is the
transformation matrix and the 2nd and 1st order statistics. fVBLR
also considers the variational lower bound as an objective function
for control parameter and model structure optimization.

2.4. Control parameter and model structure optimization

Using Eq. (20) , we first optimize the control parameter ρr by using
L(Ψ,m)r , namely

ρ̃r = argmax
ρr

L(Ψ,m)r. (21)
We use line search for optimizing the control parameter ρ̃r . Then, we
decide the model (tree) structure m without using the empirical oc-
cupancy threshold. Using the obtained ρ̃r , we calculate L(Ψ,m)r .
If we focus on node r in the tree, and if node r is not a leaf node,
we compute the following difference of the logarithmic evidences
between the current node r and two child nodes r(c1) and r(c2)

∆L(Ψ,m)r , L(Ψ,m)r − L(Ψ,m)r(c1) − L(Ψ,m)r(c2).
(22)

If the sign of ∆L(Ψ,m)r is positive, we continue splitting the node
r to r(c1) and r(c2), and if the sign is negative, we stop splitting
at node r. This optimization is efficiently accomplished by using a
depth-first search.

3. MODEL SPACE VARIATIONAL BAYESIAN LINEAR
REGRESSION

In this section, we explain model space variational Bayesian linear
regression (VBLR). In the model space VBLR [11], the variational
lower bound was analytically derived by using conjugate distribu-
tions (Eq. (5)) as prior distributions3, and assuming the conditional
independence on the posterior distributions. Here we only show the
final lower bound in the model space.

LM(Ψ,m) ∝ n

2
ln |(VMr )−1|+ n

2
ln |ṼMr |

− 1

2
tr
[(
CMr

)′
CMr V

M
r −

(
C̃Mr

)′
C̃Mr (ṼMr )−1

]
.

(23)
For the model space variables, we use (·)M notation. In the model
space, optimization of the control parameter and model structure is
the same as explained in Section 2.4. A detailed explanation of the
method can be found in [11].

4. EXPERIMENTS

4.1. Experimental conditions

The training data consisted of 967 talks from the Corpus of Sponta-
neous Japanese (CSJ) [16] conference presentations of 558 speakers
(234 hours of speech data). The test set consisted of 30 talks (6.4
hours, 70,369 words) from 30 speakers (20 males and 10 females).
Table 1 shows the experimental setup.

The acoustic model training, decoding, and the following acous-
tic model adaptation procedures were performed with the NTT
speech recognition platform SOLON [17]. For fSMAPLR and
SMAPLR, the occupancy threshold was empirically set to 500. The
control parameter for the feature space (ρ=50) and model space
(ρM=100) were also set empirically. In all our experiments, we
only considered block-diagonal forms of the transformation matrix
regardless of the adaptation methods.

4.2. Unsupervised adaptation experiment

We performed experiments using conventional fMAPLR, SMAPLR,
VBLR and fSMAPLR+SMAPLR methods, and the proposed

3The prior distribution for a feature and model space has the same form.
In Eq. (5), the transformation matrix W has to be replaced with WM.
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Prior

Wrt

W1

W9 W10

W2

W3

W7 W8

W4

50/100

50/100

50/100 50/100

50/100

50/100

50/100 50/100

50/100

(a) (f)SMAPLR (ρ=50, ρM=100, 5 leaf nodes)

Prior

Wrt

W1

W9 W10

W2

W3

W7 W8

W4

W5 W6

93.7

49.4

70.4 52.8

57.9

52.2

81.5 56.0

48.8

81.0 63.5

(b) fVBLR (6 leaf nodes)

Prior

Wrt

W1

W9 W10

W2

W3

W7 W8

W13 W14

W4

W5 W6

45.1

66.5

183.6 115.4

85.7

123.5

121.1 119.9

108.5 98.6

122.7

124.0 111.6

(c) VBLR (7 leaf nodes)

Fig. 1. Comparison of optimized model structure and control parameter sets (Speaker ID = “A01M0097”, 5 adaptation utterances≈44.68
seconds). In the figure, each gray circle means a leaf node and each number between two nodes represents the estimated control parameter.

Table 2. Word error rate comparison of unsupervised adaptation (%).

Adaptation Method Baseline
Number of adaptation utterances (average length in seconds)

1 2 3 4 5 10 20 50 all
(4.9) (12.6) (19.7) (27.4) (34.8) (69.1) (138.9) (340.9) (678.3)

fSMAPLR 22.4 21.6 20.7 20.2 20.1 20.2 19.8 19.1 18.8 18.4
fVBLR 22.4 21.6 20.7 20.3 20.2 20.1 19.6 19.0 18.7 18.5

SMAPLR 22.4 21.8 20.9 20.6 20.2 20.2 19.8 19.4 19.1 18.7
VBLR 22.4 21.7 20.8 20.5 20.2 20.1 19.8 19.3 19.3 18.9

fSMAPLR+SMAPLR 22.4 21.8 20.5 20.0 19.5 19.4 18.9 18.3 18.0 17.7
fVBLR+VBLR 22.4 21.4 20.7 20.0 19.8 19.7 19.2 18.6 18.3 18.1

Table 1. Experimental setup
Sampling rate 16 kHz
Feature vector MFCC + Energy + ∆ + ∆∆ (39 dims.)
Frame length 25 ms
Frame shift 10 ms
Window type Hamming
CMN Applied

No. of categories 43 phonemes
HMM topology Context-dependent

2,000 states, 16 mixtures
3-state left-to-right HMM

Training method ML Baum-Welch

Language model 3-gram (Kneser-Ney smoothing)
Vocabulary size 100,808
Perplexity 119.8
OOV rate 1.3

fVBLR and fVBLR+VBLR methods. The experimental results
are shown in Table 2.

At first, we compare the results of fSMAPLR and fVBLR. Com-
paring these two results, we found that the fVBLR had the sim-
ilar results with the fSMAPLR. We could find the similar trends
between SMAPLR and VBLR, and between fSMAPLR+SMAPLR
and fVBLR+VBLR. From these results, we can say that variational
Bayesian based tuning-free approach can equivalently perform with
the conventional fine-tuned approaches.

Furthermore, fVBLR+VBLR showed performance improve-
ment compared with the performance obtained by each of fVBLR
and VBLR. We had the best performance when only 1 utterance is

used for the adaptation. This result also shows that the variational
lower bound can achieve a better approximation of the marginalized
log likelihood especially for the small amount of data [18, 19].

Figure 1 shows the estimated control parameter of each node
and the tree structures for the speaker A01M0097 using 5 adaptation
utterances. Figure 1(a) shows the tree structure and control param-
eter obtained with the conventional (f)SMAPLR. The tree structure
is just determined by empirical occupancy threshold. And the con-
trol parameter for all nodes is fixed to an estimated value from the
preliminary experiment using development set. Figure 1(b) and (c)
show the obtained control parameters and tree structures by fVBLR
and VBLR. fVBLR and VBLR shows the control parameters vary
from node to node. Because the variational Bayesian approach is
based on the lower bound, the optimized tree structures are differ-
ent from each other (5 leaf nodes for (f)SMAPLR, 6 leaf nodes for
fVBLR, and 7 leaf nodes for VBLR).

Through these experiments, we found the effectiveness of the
proposed fVBLR and fVBLR+VBLR adaptation without tuning the
hyperparameters empirically.

5. CONCLUSIONS

In this paper, we have proposed the feature space VBLR (fVBLR)
and combined it with the model space VBLR (fVBLR+VBLR).
These are fully Bayesian and parameter tuning-free approaches.
In the experiments, we confirmed that the proposed method can
equivalently perform with the conventional fine-tuned approaches.
Furthermore, fVBLR+VBLR showed better performance than that
obtained by each of fVBLR and VBLR. Future work will include
the selection of the type of transformation matrix based on the lower
bound.
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