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ABSTRACT 

 
We propose a novel regularized adaptation technique for context 

dependent deep neural network hidden Markov models (CD-DNN-

HMMs). The CD-DNN-HMM has a large output layer and many 

large hidden layers, each with thousands of neurons. The huge 

number of parameters in the CD-DNN-HMM makes adaptation a 

challenging task, esp. when the adaptation set is small. The 

technique developed in this paper adapts the model conservatively 

by forcing the senone distribution estimated from the adapted 

model to be close to that from the unadapted model. This 

constraint is realized by adding Kullback–Leibler divergence 

(KLD) regularization to the adaptation criterion. We show that 

applying this regularization is equivalent to changing the target 

distribution in the conventional backpropagation algorithm. 

Experiments on Xbox voice search, short message dictation, and 

Switchboard and lecture speech transcription tasks demonstrate 

that the proposed adaptation technique can provide 2%-30% 

relative error reduction against the already very strong speaker 

independent CD-DNN-HMM systems using different adaptation 

sets under both supervised and unsupervised adaptation setups. 

 

Index Terms— deep neural network, CD-DNN-HMM, 

speaker adaptation, Kullback–Leibler divergence regularization 

 

1. INTRODUCTION 
 

Recently the context dependent deep neural network hidden 

Markov models (CD-DNN-HMMs) outperformed the 

discriminatively trained Gaussian mixture model (GMM) HMMs 

with 16% [1][2] and 33% [3] relative error reduction, respectively, 

on the Bing voice search [4] and the Switchboard (SWB) tasks. 

Similar improvement has been observed on other tasks such as 

broadcast news, Google voice search, Youtube and Aurora4 [5]-

[11]. Most recently Kingsbury et al. [8] showed that the speaker 

independent (SI) CD-DNN-HMM can outperform the well-tuned 

state-of-the-art speaker adaptive GMM system with more than 

10% relative error reduction on the SWB task by applying the 

sequence-level discriminative training on the CD-DNN-HMM. The 

potential of CD-DNN-HMMs, however, are yet to be explored. In 

this paper we propose a regularized adaptation technique for DNNs 

to further improve the recognition accuracy of CD-DNN-HMMs. 

The CD-DNN-HMM is a special case of the artificial neural 

network (ANN) HMM hybrid system developed in 1990s, for 

which several adaptation techniques have been developed. These 

techniques can be classified into categories of linear transformation 

[12]-[20], conservative training [21]-[23], and subspace method 

[24]. However, compared to the earlier ANN/HMM hybrid 

systems, CD-DNN-HMMs have significantly more parameters due 

to wider and deeper hidden layers used and the much larger output 

layer designed to model senones (tied-triphone states) directly. 

This difference casts additional challenges to adapting CD-DNN-

HMMs, esp. when the adaptation set is small. 

In this paper we propose a novel regularized adaptation 

technique for DNNs. Our proposed technique adapts the model 

conservatively by forcing the senone distribution estimated from 

the adapted model to be close to that estimated from the unadapted 

model. This constraint is realized by adding Kullback–Leibler 

divergence (KLD) regularization to the adaptation criterion. We 

show that applying this regularization is equivalent to changing the 

target distribution in the conventional backpropagation (BP) 

algorithm. Experiments on Xbox voice search, short message 

dictation, and SWB and lecture transcription tasks demonstrate that 

the proposed adaptation technique can provide 2%-30% relative 

error reduction against the already very strong speaker independent 

CD-DNN-HMM systems using different adaptation sets under both 

supervised and unsupervised adaptation setups. This new technique 

also outperforms the feature discriminative linear regression 

(fDLR) technique proposed in [25] and the output-feature 

discriminative linear regression (oDLR) proposed in [20]. 

The rest of the paper is organized as follows. In Section 2 we 

briefly review CD-DNN-HMMs. In Section 3 we describe our 

proposed regularized adaptation algorithm. In Section 4 related 

work is briefly introduced. We report the experimental results in 

Section 5 and conclude the paper in Section 6. 

 

2. CD-DNN-HMM 
 

The CD-DNN-HMM [1][3] is a special ANN/HMM hybrid system 

in which  DNNs are in place of the shallow ANNs and are used to 

model senones directly. The DNN accepts an input observation  , 

which typically consists of 9-13 frames of acoustic features, and 

process it through many layers of nonlinear transformation  
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is used to estimate the state posterior probability  (     ), 
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which is converted to the HMM state emission probability as 
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  ( )  (4) 

where   {       } is a senone id,   is the total number of 

senones,  (   ) is the prior probability of senone  , and  ( ) is 

independent of state  . 

The parameters of DNNs are typically trained to maximize the 

negative cross entropy  
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where N is the number of samples in the training set and  ̃(    ) is 

the target probability. Often times we use a hard alignment from an 

existing system as the training label, under which condition 

 ̃(    )   (    ), where   is Kronecker delta and    is the 

label of the  -th sample, i.e. the  -th observation frame in our 

training corpus. The training is carried out using the BP algorithm, 

speeded up with GPU and minibatch updates. 

 

3. REGULARIZED ADAPTATION 
 

An obvious approach to adapting DNNs is adjusting all the DNN 

parameters with the adaptation data, starting from the SI model. 

However, doing so may destroy previously learned information 

and overfit the adaptation data, esp. if the adaptation set is small. 

To prevent this from happening, adaptation needs to be done 

conservatively. The technique proposed here does exactly this. 

The intuition behind our proposed approach is that the 

posterior senone distribution estimated from the adapted model 

should not deviate too far away from that estimated using the 

unadapted model, esp. when the adaptation set is small. 

Since the DNN outputs are probability distributions, a natural 

choice in measuring the deviation is the Kullback–Leibler 

divergence (KLD). By adding this divergence as a regularization 

term to eq. (5) and removing the terms unrelated to the model 

parameters we get the regularized optimization criterion 
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where    (    ) is the posterior probability estimated from the SI 

model and computed with a forward pass using the SI model, and 

  is the regularization weight. Eq. (6) can be reorganized to 
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where we have defined 

 ̂(    )  (   ) ̃(    )      (    )  (8) 

By comparing eqs. (5) and (7) we can see that applying the 

KLD regularization to the original training criterion equals to 

changing the target probability distribution from   ̃(    ) to 

 ̂(    ), which is a linear interpolation of the distribution 

estimated from the unadapted model and the ground truth 

alignment of the adaptation data. This interpolation prevents 

overtraining by keeping the adapted model from straying too far 

from the SI model. Note that this differs from L2 regularization 

[23], which constrains the model parameters themselves rather than 

the output probabilities. This also indicates that the normal BP 

algorithm can be directly used to adapt the DNN. The only thing 

needs to be changed is the error signal at the output layer, which is 

now defined based on  ̂(   )  
The interpolation weight, which is directly derived from the 

regularization weight ρ, can be adjusted, typically using a 

development set, based on the size of the adaptation set, the 

learning rate used, and whether the adaptation is supervised or 

unsupervised. When ρ=1, we trust completely the unadapted model 

and ignore all new information from the adaptation data. When 

ρ=0, we adapt the model solely on the adaptation set, ignoring 

information from the unadapted model except using it as the 

starting point. Intuitively we should use a large ρ for a small 

adaptation set and a small ρ for a large adaptation set. 

 

4. RELATED WORK 
 

Many ANN adaptation techniques have been developed in the past. 

These techniques can be classified into three categories: linear 

transformation, conservative training, and subspace method. 

 

4.1 Linear Transformation 
 

The  simplest  and  most  popular  approach  to  adapting  ANNs  is  

applying a linear  transformation, either to the input feature (as in 

the linear input network (LIN) [12]-[15], [17]-[19] and the very 

similar feature discriminative linear regression (fDLR) [25]), to the 

activation of a hidden layer (as in the linear hidden network (LHN) 

[16]), or to the softmax layer (as in the linear output network 

(LON) [15] and in the output-feature discriminative linear 

regression (oDLR) [20]). No matter where the linear 

transformation is applied, it is typically trained from an identity 

weight matrix and zero bias to optimize the criterion specified in 

eq. (5), keeping fixed the weights of the original ANN. 

 

4.2 Conservative Training 
 

Another popular category of adaptation techniques is conservative 

training (CT) [22]. CT can be achieved by adding regularizations 

to the adaptation criterion. For example, in [23], L2 regularization 

was used. The KLD regularization approach proposed in this paper 

is another regularization technique.  An alternative CT technique is 

adapting only selected weights, e.g., in [21] only weights 

connected to the hidden nodes with maximum variance (computed 

on the adaptation data) are adapted. Adaptation with very small 

learning rate and early stopping can also be considered as CT. 

 

4.3 Subspace Method 
 

Subspace method aims to find a speaker subspace and then 

construct adapted ANN weights or transformations as a point in the 

subspace. For example, in [24]  subspace is used to estimate an 

affine transformation matrix by considering it as a random 

variable. Principal components analysis (PCA) was performed on a 

set of adaptation matrices to obtain the principal directions (i.e. 

eigenvectors) in the speaker space. Each new speaker adaptation 

model is then approximated by a linear combination of the retained 

eigenvectors. The linear combination weights can be estimated 

using BP. In [26] a speaker subspace and a speech subspace are 

estimated and combined using tensors. The deep tensor neural 
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network developed in [27] is also a subspace method. 

 

5. EMPIRICAL EVALUATION 
 

To evaluate the proposed KLD-Reg approach, we have conducted 

a series of experiments on four different datasets. To obtain the 

results reported in this section we adapted all parameters in the 

DNNs, which always outperforms the setup where only the 

softmax layer is adapted on these datasets. 

 

5.1 Xbox Voice Search 
 

Our initial set of experiments were conducted on a small internal 

Xbox voice search (VS) task which features distant talking voice 

search of music catalog, games, movies, and so on. We selected 

this dataset since it has been used in our previous study so that we 

can compare the KLD-Reg approach with fDLR [25], which 

performs slightly better than oDLR [20] on the same dataset. 

The features were 13-dimensional Mel filter-bank cepstral 

coefficients (MFCC) with up to third derivatives, further 

transformed to 36-dimension with heterogeneous linear 

discriminate analysis (HLDA). Per-device cepstral mean 

subtraction was applied. The baseline SI models were trained using 

40 hours of voice search data. The GMM-HMM model had 70k 

Gaussian components and 1509 senones optimized with the 

standard maximum likelihood estimation (MLE) procedure. The SI 

CD-DNN-HMM system used an 9-frame input layer, three 2048-

neuron hidden layers, and a 1509-neuron output layer. The DNN 

system was trained using the frame-level cross entropy criterion 

and the senone alignment generated from the MLE system. The 

trigram language model (LM) used in evaluating both SI and 

adapted models was trained on the transcriptions of all the data — 

including the test set. This is obviously suboptimal, but needed due 

to the unfortunate nature of the data set which has a significant out-

of-vocabulary rate; we basically trade skewing the result due to 

OOVs for skewing the result due to test-set-inside-LM (an overly 

strong LM should make the results tend to be a lower bound for the 

effectiveness of acoustic adaptation). Thus, when interpreting the 

result in this section, please be aware of this experimental 

shortcoming, and note that the same limitation also applies to 

previously reported fDLR/oDLR results on this data set. The other 

data sets reported in this paper do not have this problem. 

The adaptation experiments were conducted on 6 speakers 

(excluded from the training set), for whom we have over 300 

utterances, the newest of which were used as test utterances. The 

total number of tested words is 5185. Without adaptation, the 

GMM system achieved 43.6% word error rate (WER) and the 

DNN system obtained 34.1% WER. The goal of the experiments is 

to improve the recognition accuracy using each speaker’s past data. 

We pretended we have 200, 100, 50, 25, 10, and 5 past utterances 

for adaptation for each speaker by sampling from his/her past 

utterances. 200 utterances and 5 utterances roughly equal to 12 

minutes and 18 seconds of audio data, respectively, in this dataset. 

In all these experiments we used the adaptation strategy optimized 

for fDLR, as demonstrated in [20], with 10 passes of data and 

1x10-5 learning rate per sample. 

Figure 1 compares the WER using the supervised fDLR and 

KLD-Reg adaptation techniques. From this figure we can make 

three observations. First, KLD-Reg helps, esp. when the adaptation 

set is small. In fact, when only 5 or 10 utterances were used for 

adaptation, the KLD-Reg adapted model degraded the accuracy. 

However, when the regularization weight   was increased to 

greater than 0.0625 the adapted model consistently outperformed 

the SI model. Second, the WER reduction seems to be robust to the 

choice of   once it’s in the right range (e.g., [0.0625 0.5]). In 

addition, when the adaptation set is large (e.g., 200 utterances), 

good WER reduction can be obtained even with a very small ρ. 

Third, the KLD-Reg outperformed fDLR across all adaptation set 

sizes. The 5-1 cross validation indicates the average relative WER 

reductions using supervised KLD-Reg are 20.7%, 17.7%, 17.5%, 

11.1%, 7.0%, and 5.3%, with 200, 100, 50, 25, 10, and 5 utterances 

of adaptation data, respectively. 

 

 
Figure 1: WERs on the Xbox voice search dataset for supervised 

fDLR and KLD-Reg adaptation. Numbers in parentheses are 

regularization weights ρ. The dashed line is the baseline WER 

using the SI DNN model. Note the remark in the text on LM used. 

 

5.2 Short Message Dictation 
 

The second experiment was conducted on a short message 

dictation (SMD) task, which has longer utterances than VS. The 

goal is to see whether KLD-Reg is effective on other tasks. The 

baseline SI models were trained using 300hr voice search and 

SMD data. The evaluation was conducted on data from 9 speakers, 

out of which 2 were used as the development set and 7 were used 

as the test set. The total number of test set words is 20668. There is 

no overlap among training, adaptation and test sets.  

The SI GMM-HMM acoustic model has approximately 288k 

Gaussian components and 5976 senones trained with the MLE 

procedure, followed by fMPE and BMMI.  The baseline SI CD-

DNN-HMM system used 24 log-filter bank features with up to 

second derivatives and a context window size of 11, forming a 

vector of 792-dimension (72x11) input. On top of the input layer, 

there are 5 hidden layers with 2048-neurons each. The output layer 

has a dimension of 5976. The DNN system was trained using the 

senone alignments from the GMM-HMM system. The baseline SI 

GMM-HMM system and CD-DNN-HMM system achieved 30.4% 

and 23.4% WER, respectively, on the 7-speaker test set. 

Same as in the VS experiment, we varied the number of 

adaptation utterances from 5 (32 seconds) to 200 (22 minutes). 

Different from the previous experiments, though, we used the 2-

speaker development set to determine the learning rate (4x10-5 per 

sample) and applied it to the 7-speaker test set. 

Figure 2 (a) and (b) summarize the WER on the SMD dataset 

using supervised and unsupervised KLD-Reg adaptation, 

respectively. From these figures we can observe that KLD-Reg is 

very effective on this task as well. With the optimal regularization 

weights determined by the development set we get 30.3%, 25.2%, 

18.6%, 12.6%, 8.8%, and 5.6% relative WER reduction using 

supervised adaptation, and 14.6%, 11.7%, 8.6%, 5.8%, 4.1%, 

2.5%, using unsupervised adaptation, respectively, with 200, 100, 
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50, 25, 10, and 5 utterances of adaptation data. These figures also 

show clearer (since the learning rate is optimized using a dev set) 

that larger regularization weights should be used for smaller 

adaptation set and smaller regularization weights should be used 

for larger adaptation set, although the error reductions are quite 

robust as long as the regularization weight is within [0.125 0.5] on 

this task. Compared to the supervised adaptation, the unsupervised 

setup can benefit from larger regularization weights. We believe 

this is because the labels in the unsupervised adaptation setup are 

less reliable and thus we should trust the output from the SI model 

even more during the adaptation. 

 

 
(a) Supervised Adaptation 

 
(b) Unsupervised Adaptation 

Figure 2: WERs on the SMD dataset using KLD-Reg adaptation 

for different regularization weights ρ (numbers in parentheses). 

The dashed line is the SI DNN baseline. 

 

5.3 Switchboard and Lecture Transcription 
 

In the SWB task we want to use the unsupervised adaptation to 

improve the recognition accuracy of that utterance itself (45 

segments or 3 mins). The SI DNN model was trained using 309hr 

SWB-I training set with the exact same configuration (11 frames of 

input features, seven 2048-neuron hidden layers, and a 9.3K-

neuron output layer) as that described in [3][25]. The evaluation 

was conducted on the 1831-segment SWB part of the NIST 2000 

Hub5 eval set. On this task we achieved on average 2.7% relative 

WER reduction which is slightly better than the 2.0% obtained 

with fDLR [25]. The 2.7% reduction, however, is only half of that 

achieved on the SMD task using similar amount of adaptation data 

(3 mins or 25 utterances in SMD). This might because the SI DNN 

in the SMD task was trained with a mixture of VS and SMD data. 

Our last experiment was conducted on a lecture transcription 

task where enough adaptation data (6 lectures 3.8hrs total) were 

available. The SI DNN model was trained with the 2000hr SWB 

data and has seven 2048-neuron hidden layers and an 18K output 

layer. The development and test sets are each a lecture and have 

5612 and 8481 words, respectively. Table 1 summarizes the 

experimental results and indicates that good improvement can be 

achieved with the proposed adaptation technique. For comparison, 

we also optimized a speaker-dependent (SD) CD-DNN-HMM with 

the 6 lectures (with transcription) used for adaptation. In this task, 

the SD model outperformed the DNN baseline trained using 

2000hr of (mismatched) SWB data on both the development and 

test sets. However, it underperformed the adapted models. This 

confirmed the effectiveness of the proposed adaptation technique.  

Table 1. WER and Relative WER Reduction (in parentheses) on 

Lecture Transcription Task. 

 SI DNN  Supervised Unsupervised SD DNN 

Dev Set 16.0% 14.3% (10.6%) 14.9% (6.9%) 15.0% 

Test Set 20.9% 19.1% (8.6%) 19.4% (7.2%) 20.2% 

 

6. CONCLUSION AND DISCUSSION 
 

In this paper we have proposed a novel conservative adaptation 

technique for DNNs. The basic idea of our approach is to force the 

senone posterior probability estimated from the adapted model to 

not deviate too much from that estimated using the unadapted 

model. To achieve this goal we have applied a KLD regularization 

term to the adaptation criterion. We showed that this is equivalent 

to adjusting the target distribution of the training samples and thus 

can be easily incorporated into the existing BP training procedure. 

Experiments on four datasets demonstrated the superiority of our 

approach with 2-30% relative WER reduction against already very 

strong CD-DNN-HMM systems under various adaptation setups.  

We believe the research on the DNN adaptation just started. 

The simple extension of this work would be to come up with a 

regression model, trained on many different tasks and adaptation 

set sizes, for determining the regularization weight. This would 

make it easier to apply the KLD-Reg method to new tasks. 

Alternatively, Bayesian optimization techniques might be used to 

search for the best hyper-parameters (which we did not optimize 

aggressively in our experiments) for different adaptation tasks [28]. 

Another direction of research is to build variable parameter DNNs 

similar to the variable parameter HMMs [29], in which the model 

parameters are functions of some control parameters such as 

signal-to-noise ratio. The strength of such a model is its ability to 

adjust the model parameters automatically based on even 

continuous control parameters. The fourth direction is to factorize 

the effect of the speaker, environment and channel to the model 

parameters so that we can find subspaces of each and combine 

them to estimate a new adapted model even for a speaker-

environment combination that has never been observed before. 

This is motivated by the fact that the adapted models in the lecture 

transcription task, although outperformed the unadapted DNN on 

both the development and test sets, increased WER from 14.2% 

(baseline) to 16.0% (supervised) and 14.6% (unsupervised), when 

applied to the same speaker under different channel and 

environment conditions (mismatched to the adaptation data). The 

last possible direction is to use speaker adaptive training technique 

[30] to separate the canonical model and the adaptation model.  
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