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ABSTRACT

This paper proposes a new approach for unsupervised model adap-
tation using a discriminative criterion. Discriminative criteria for
acoustic model training have been widely used and have provided
significantly improved performance compared with models trained
using maximum likelihood. However, discriminative criteria are sen-
sitive to errors in reference transcriptions, which limits their applica-
bility to unsupervised adaptation. In this paper, we apply the recently
proposed differenced maximum mutual information (dMMI) criteria
to unsupervised linear regression based adaptation because dMMI
has an intrinsic mechanism that mitigates the influence of transcrip-
tion errors. We report unsupervised adaptation results for a large vo-
cabulary continuous speech recognition task showing a significant
improvement over maximum likelihood based linear regression.

Index Terms— Speech recognition, acoustic model adaptation,
discriminative learning, unsupervised adaptation, differenced MMI

1. INTRODUCTION

Recent recognition systems usually use acoustic models [1] and lan-
guage models [2] trained with discriminative criteria. The aim of
using discriminative criteria is to achieve the direct optimization of
the classification accuracy, by considering both references and com-
peting recognition hypotheses. Therefore, such criteria are better
related to the word error rate than the maximum likelihood (ML)
criterion and have led to the consistent improvement of recognition
accuracy. Many discriminative criteria have been proposed, includ-
ing maximum mutual information (MMI) [3], minimum phone error
(MPE) [4, 5], boosted MMI (BMMI) [6] and more recently differ-
enced MMI (dMMI) [7, 8].

There have been several attempts to use discriminative criteria
for acoustic model adaptation [9, 10, 11, 12, 13, 14, 15, 16]. Adapt-
ing an acoustic model to a desired speaker or environment is im-
portant if we are to compensate for the mismatch that occurs be-
tween training and test conditions. Using a discriminative criterion
for adaptation is desirable because it may provide better recogni-
tion performance, and because it can preserve the discriminative ca-
pability of the acoustic models. However, it is challenging to ap-
ply discriminative criteria to unsupervised adaptation. Indeed, in
this case, no reference transcriptions are available beforehand. The
transcriptions must thus be estimated by a first recognition pass and

therefore the transcriptions inevitably contain errors. Such errors
may be challenging when using discriminative criteria that directly
attempt to optimize classification accuracy, assuming correct labels.
Some approaches have been proposed to mitigate this issue by focus-
ing for the references on the adaptation data that are expected to be
correctly recognized [14, 16]. This was achieved by weighting the
MPE objective function by a word/phoneme correctness estimation
obtained from a confusion network [14] or estimated using support
vector machine [16].

In this paper, we propose using the recently reported dMMI cri-
terion for unsupervised acoustic model adaptation based on linear re-
gression (LR). We refer to the proposed method as dMMI-LR. dMMI
generalizes the MPE and BMMI criteria [7]. It is defined as an in-
tegration of margin-based MPE [5] over a margin interval, and can
be simply obtained as the difference between two BMMI objective
functions [8]. dMMI appears well suited for unsupervised adaptation
because it defines references in a soft manner, i.e. as a summation
of recognition candidates weighted by a margin term, and therefore
has an intrinsic mechanism that mitigates the influence of transcrip-
tion errors. In contrast to [14, 16] it does not require an explicit
estimation of word correctness. We have recently investigated the
use of dMMI for training discriminative feature transforms [17] and
for unsupervised dynamic variance adaptation [18], both applied to
a small noisy command recognition task. Here we discuss its use
for adaptation based on linear regression, which is both more gen-
eral and widely used than [18]. Moreover, we present experimental
results for a large vocabulary task.

The paper is organized as follows. In Section 2 we review the
principles of LR based adaptation. We discuss the dMMI criterion in
Section 3, and its application to LR adaptation in Section 4. Then we
compare dMMI-LR with previous studies in Section 5. Finally, be-
fore concluding, we discuss experimental results for the MIT lecture
recognition task.

2. ADAPTATION USING LINEAR REGRESSION

Adaptation using linear regression (LR) such as MLLR, has been
widely used. It is very flexible and can be employed for speaker or
environment adaptation [19]. LR adaptation consists of transform-
ing the parameters of an acoustic model according to the following
equation [20],

µ̂l = Aµl + b = Lξl, (1)
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where µ̂l is the compensated mean vector of the lth Gaussian of the
acoustic model, and A and b are a transformation matrix and a bias
vector, respectively. The second part of Eq. (1) shows the simplified
expression obtained by defining L , [A b] and ξl , [µ⊺

l 1]
⊺. In

this paper we consider only the adaptation of the mean parameters of
the Gaussians of the acoustic model although the proposed method
could be extended to variance adaptation [19, 18].

The adaptation parameters L are usually shared among a clus-
ter of Gaussians of the acoustic model, which is generated using
a binary tree clustering of the Gaussians. Ck is the set of Gaus-
sians belonging to the kth cluster, and Lk represents the correspond-
ing adaptation parameters. The set of all the adaptation parameters
Θ , [L1, . . . ,LK ] is optimized as,

Θ̂ = argmax
Θ

FΘ(X,Sr), (2)

where FΘ(X,Sr) is an objective function, X is the set of feature
vectors xt, i.e. X , [x0, . . . ,xt, . . . ,xT ] and Sr is the correspond-
ing reference transcription. To simplify the notations, we assume
that X includes all the adaptation data. For unsupervised adapta-
tion, Sr is obtained from a first recognition pass.

Conventional MLLR [20] uses the likelihood as an objective
function. In this paper, we discuss the use of the dMMI criterion
for the optimization.

3. DIFFERENCED MAXIMUM MUTUAL INFORMATION

dMMI was recently proposed for generalizing existing discrimina-
tive criteria such as MPE [4, 5] and BMMI [6]. It can be easily
explained by defining a pseudo-probability function ΨΘ,σ as [21],

ΨΘ,σ(X,Sr) ,
∑
j

P (Sj)
ψη
pΘ(X|Sj)

ψ
e
ψσEj,r , (3)

where
∑
j is a summation over recognition hypotheses Sj , P (Sj)

represents the language model, and pΘ(X|Sj) represents the acous-
tic model. ψ and η are the acoustic scaling [4] and language weight,
respectively. The term eψσEj,r represents a margin or boosting
term [5, 6], where σ is a margin parameter and Ej,r represents the
error between the recognition candidate Sj and the reference Sr ,
that is expressed in this paper by the phone frame error as defined
in [22]. In the following, to simplify the notations, we drop the
arguments (X,Sr) of ΨΘ,σ(X,Sr) and FΘ(X,Sr).

We can see from Eq. (3) that by setting σ at a positive value the
recognition candidates with large numbers of errors (i.e. Ej,r ≫)
will be emphasized in the summation. In contrast, by setting σ at a
negative value, recognition candidates that are “close” to the refer-
ence (i.e. small Ej,r) will be emphasized. For σ → −∞, only the
term with Ej,r = 0 (i.e. corresponding to the reference) remains in
the summation of Eq. (3).

With the above definition, the objective function of BMMI can
be expressed as [6, 21],

FBMMI
Θ,σ =

1

ψ
log

P (Sr)
ψηpΘ(X|Sr)

ψ∑
j P (Sj)ψηpΘ(X|Sj)ψeψσEj,r

,

=
1

ψ
log

ΨΘ,−∞

ΨΘ,σ

. (4)

In a similar way, it is possible to express the MPE objective function
as [21],

FMPE
Θ,σ =

1

ψ

d
dσ

(ΨΘ,σ)

ΨΘ,σ

(5)

The objective function of dMMI is defined as the integration of
the MPE loss (i.e. −FMPE

σ (Θ, X, Sr)) over a margin interval [8],

FdMMI
Θ,σ1,σ2 =

1

(σ2 − σ1)

∫ σ2

σ1

−FMPE
σ dσ

=
1

(σ2 − σ1)
(FBMMI

σ2 −FBMMI
σ1 )

=
1

ψ(σ2 − σ1)
log

ΨΘ,σ1

ΨΘ,σ2

. (6)

Comparing Eqs. (4) and (6), we observe that the dMMI and BMMI
objective functions can both be expressed as a ratio of two ΨΘ,σ

functions with different margins. dMMI generalizes BMMI in the
sense that we can choose any margin parameter value σ1 for the nu-
merator. By setting σ1 at a negative value, the numerator of Eq. (6)
becomes equivalent to the contribution of references defined in a soft
manner, i.e. by considering the recognition candidates close to the
reference. This soft definition of the references may mitigate the in-
fluence of transcription errors that inevitably occur when performing
unsupervised adaptation.

Note that by setting σ1 at a large negative value, dMMI becomes
equivalent to BMMI [8]. In contrast, by setting σ1 = −ǫ and σ2 = ǫ,
where ǫ is a small positive number, dMMI becomes equivalent to
MPE [8].

4. DMMI LINEAR REGRESSION

To solve the problem of Eq. (2) for the dMMI objective function, we
use a gradient optimization method. The gradient is obtained with a
lattice-based Forward-Backward algorithm as,

∂FdMMI
Θ,σ1,σ2

∂Lk
=

∑
q∈Qt

∑
l∈Ck,q

γ
dMMI
q,l,t Σ−1

l (xt − µl)ξ
⊺

l , (7)

where Qt is the set of all lattice arcs that contain the feature vec-
tor xt, and Ck,q is the set of Gaussians within arc q belonging to
cluster Ck. γdMMI

q,l,t is the product of the posterior probability of
Gaussian l and the dMMI arc posterior probability or occupancy,
calculated by running the Forward-Backward algorithm twice on
the same lattice once with σ1 and once with σ2 [8]. Note that∑
q∈Qt

γdMMI
q,l,t Σ−1

l (xt − µl) corresponds to the statistics ac-
cumulated for the discriminative training of the acoustic models.
Consequently, the gradient for dMMI-LR can be obtained by the
simple modification of an existing gradient based discriminative
training system. We use the RPROP algorithm for the gradient
optimization [23] as it has been widely used for discriminative
training [1].

For adaptation using binary cluster trees, the clusters are usually
chosen by comparing the cluster occupancy count with an occupancy
count threshold. When performing dMMI-LR, we use the occupancy
count obtained with ML, since the occupancy count obtained with
dMMI may take unrealistic values (i.e. negative values). This is
equivalent to [10].
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5. RELATION TO PREVIOUS STUDIES

dMMI-LR shares similarities with other approaches to unsupervised
adaptation that attempt to mitigate the influence of transcription er-
rors. For example, in [24, 25] lattice representation of the references
was proposed. This achieves a similar soft definition of the refer-
ences as dMMI-LR without considering the margin term. However,
[24, 25] applied the method to MLLR and did not employed it with
a discriminative criterion.

In [14, 16] errors in the reference transcriptions were mitigated
by weighting the numerator MPE occupancies by using an estimate
of the word correctness. This is therefore similar in principle to the
smoothing effect of the margin term of the numerator of the dMMI
objective function. However, for dMMI-LR, the smoothing is the-
oretically motivated and intrinsic to the objective function, whereas
[14, 16] require a separate module to estimate the word correctness
and are more heuristic. Moreover, [14, 16] employ different lattices
generated with strong and weak language models for the numerator
and denominator of the objective function. The proposed dMMI-LR
uses the same lattices for the numerator and denominator, which may
simplify the implementation.

6. EXPERIMENTS

We conducted experiments using the MIT lecture speech corpus [26,
27].

6.1. Experimental settings

The training data consists of 104 lectures corresponding to 110 hours
of speech. The test data consist of development and evaluation sets
that contain 2 and 8 lectures, respectively.

We used 12-dimension MFCCs with energy, delta and delta delta
(39 dimensions in total). The features were processed with cep-
stral mean subtraction. The acoustic model consists of left-to-right
phone HMMs with HMM state probability densities modeled by
GMMs with 32 components. There were a total of 2546 context de-
pendent states, which was automatically determined by variational
Bayes [28]. The acoustic model was trained with dMMI with mar-
gin parameters σ1 = −2 and σ2 = 3. The language model consists
of word trigram models trained using 6.2 M words of manually tran-
scribed lecture speech. The vocabulary size of the lexicon is 16.5
K.

We performed unsupervised batch adaptation on a per lecture
basis. This corresponds to speaker and environment adaptation.
We used full transformation matrices and set the occupancy count
threshold at 5000. For BMMI-LR and dMMI-LR we first adapted
the acoustic model with MLLR to obtain good initial conditions.
This is equivalent to the common practice in discriminative training
of using an acoustic model trained with ML as the initial value.
Similar approaches have also been previously used for discrimina-
tive adaptation [10, 13, 14, 16]. For a fair comparison of the results,
we used the same dMMI baseline system with the same language
model described above to generate recognition lattices and 1-best
recognition results used for all the adaptation experiments. All the
results are evaluated with respect to the word error rate (WER).

Table 1. WER for unsupervised adaptation for the development and
evaluation sets of the MIT lecture speech corpus. The boldface fonts
indicate the best performance.

Dev. Eval.
Baseline (dMMI AM) 36.7 % 30.6 %
Baseline + MLLR 34.5 % 26.9 %
Lattice-MLLR 34.7 % 26.8 %
BMMI-LR 34.6 % 27.1 %
dMMI-LR (proposed) 33.6 % 25.8 %

6.2. Results

Table 1 shows the WER of the development and evaluation sets for
the baseline system trained with dMMI, and with adaptation us-
ing MLLR, Lattice-MLLR [24, 25], BMMI-LR and dMMI-LR. For
MLLR, the EM algorithm is usually used [20] for the optimization.
Here, to obtain consistent results, we used the same gradient opti-
mizations in all cases. Note that in this task we observed that the
gradient-based MLLR performed as well as or slightly better than
EM-based MLLR.

For BMMI-LR and dMMI-LR we choose the margin parameters
and the number of iterations to realize optimal performance on the
development set (i.e. σ = 0.1 for BMMI, and σ1 = −10, σ2 = 0.1

for dMMI). For dMMI-LR we did not perform I-smoothing. MLLR
achieved an absolute WER reduction of 2 to 4 points. Lattice-based
MLLR slightly improved the performance for the evaluation set only.
BMMI-LR provided no improvement in performance compared with
MLLR. Here we used only the 1-best recognition results as reference
transcriptions, and therefore transcription errors may prevent any im-
provement over MLLR. In contrast, dMMI provided an additional
absolute WER reduction of 1 point for both the development and
evaluation sets. We confirmed that dMMI-LR improved the perfor-
mance compared with MLLR for all lectures with relative improve-
ments ranging from 1 to 7.4 % depending on the lectures. We also
confirmed that the improvement brought about by dMMI-LR over
MLLR was significant according to the matched pair sentence seg-
ment test (significance level below 0.001) calculated using the NIST
scoring toolkit [29].

6.3. Discussion

6.3.1. Influence of margin parameters

We set the margin parameters for dMMI to achieve optimal perfor-
mance on the development set. We focused on the tuning of σ1,
which is related to the definition of the soft references (σ2 was fixed
at 0.1, according to some preliminary experiments).

Figure 1 shows the WER as a function of σ1 for the develop-
ment set. Note that a σ1 value close to 0 is equivalent to MPE while
σ1 → −∞ (here σ1 = −50) is equivalent to BMMI. We observed
that improved performance could be achieved for a wide range of
margin parameters, and that the best performance was obtained for
an intermediate value of σ1 = −10. This is consistent with our
intuition that the soft references can improve performance for unsu-
pervised adaptation. Note that the difference between the values of
the margin parameters of dMMI used for acoustic model training and
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Fig. 1. WER as a function of σ1 for σ2 = 0.1 for the development
set. For reference, the dashed line shows the performance obtained
by MLLR.

Table 2. WER as a function of the occupancy count threshold for
MLLR and dMMI-LR with σ1 = −10 and σ2 = 0.1.

Occupancy Threshold 5000 1000 500
Nb transforms ≈80 ≈400 ≈800
Dev. MLLR 34.5 % 34.6 % 34.6 %

dMMI-LR 33.6 % 34.0 % 34.5 %
Eval. MLLR 26.9 % 26.8 % 26.9 %

dMMI-LR 25.8 % 26.3 % 26.7 %

adaptation can be explained by the fact that the training is supervised
and therefore is less subject to transcription errors. Consequently a
larger value of σ1 is used for training (i.e. σ1 = −2).

6.3.2. Influence of occupancy count threshold

Table 2 shows the WER for different occupancy count thresholds,
for MLLR and dMMI-LR. The second line in Table 2 shows the ap-
proximate number of clusters used in the regression tree, which is
equivalent to the estimated number of transforms. We found that the
best performance was obtained for an occupancy threshold of 5000.
With MLLR, the performance remained relatively stable as the num-
ber of transforms increased. This may be due to the gradient-based
implementation of MLLR that does not require the matrix inversion
of conventional EM-based MLLR [20], making it possible to use
fewer data with each transform [13]. This intuition was confirmed by
observing that with EM-based MLLR, the performance degradation
increased as the number of transforms increased. The performance
improvement realized by dMMI-LR decreased with increased com-
plexity, i.e. an increased number of transforms. This is consistent
with the widely known characteristics of discriminative training [1].

6.3.3. Convergence

Finally, Figure 2 shows the WER as a function of the number of iter-
ations for dMMI-LR. We observed a relatively smooth convergence,
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Fig. 2. WER as a function of the number of iterations for σ1 = −10

and σ2 = 0.1 for the development set. For reference, the dashed line
shows the performance obtained by MLLR.

and obtained optimal performance for about 15 iterations. Although
we did not perform I-smoothing for dMMI-LR, no significant over-
fitting was observed at least for up to 20 iterations. We may expect
the performance to degrade if we further increase the number of it-
erations.

7. CONCLUSION

In this paper, we discussed dMMI-based LR adaptation. We showed
that dMMI has an intrinsic mechanism that mitigates the influence of
transcription errors, making it particularly adequate for unsupervised
adaptation. Results for a large vocabulary recognition task showed
a significant improvement compared with MLLR. Future work may
include combining dMMI-LR with approaches that incorporate esti-
mated phoneme/word accuracy more directly as in [16, 30].
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