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ABSTRACT

This paper proposes a spectral modeling technique based on a con-
textual partial additive structure for HMM-based speech synthesis.
To represent complicated context dependencies, contextual additive
structure models assume multiple independent components which
have different context dependencies to form acoustic features. In ad-
ditive structure models, there is a constraint that a fixed number of
additive components are used for generating acoustic features. How-
ever, it is natural to assume that the number of components depends
on contexts. In the proposed technique, partial additive components
affecting arbitrary contextual sub-spaces are created on demand to
increase the likelihood. Then, the number of components for each
context can be automatically determined with the training data. Ex-
perimental results show that the proposed technique outperformed
the standard technique in a subjective test.

Index Terms— HMM-based speech synthesis, Decision trees,
Context clustering, Contextual additive structure, Distribution con-
volution

1. INTRODUCTION

Speech parameters, such as spectrum, excitation, and duration, de-
pend on a variety of contextual factors such as phoneme identities,
accent, and parts-of-speech, etc. In the HMM-based speech synthe-
sis system [1], context dependent models are generally used to cap-
ture these contextual dependencies. One of the major difficulties in
context dependent modeling is to find good balance between model
complexity and the availability of training data. Furthermore, since
it is difficult to prepare training data covering all context dependent
models, there are numerous unseen models that are not observed in
the training data but that are required in the synthesis phase.

To solve this problem, the decision tree based context clustering
has been proposed [2]. In this clustering, HMM states of context
dependent models are grouped into clusters, and all states belong-
ing to the same cluster share the output probability distribution. A
binary tree is constructed based on the maximum likelihood crite-
rion by applying a phonetic question to each node and iteratively
splitting the cluster into two child clusters. By limiting the num-
ber of possible splits using prior knowledge, linguistic and articula-
tory information can be reflected in the clustering results. Instead of
the maximum likelihood criterion, the minimum description length
(MDL) criterion can also be adopted to automatically determine the
optimal number of clusters without setting a threshold [3].

In the context clustering, all states in the same cluster share their
output probability distribution. This means that the states have direct
dependencies of phonetic contexts. To represent more moderate de-
pendencies between contextual factors and acoustic features, an ad-
ditive structure of acoustic features has been proposed [4]. Since the
output probability distribution is composed of the sum of the mean
vectors and covariance matrices of additive components, a number
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of different distributions can be efficiently represented by a combi-
nation of fewer distributions. Additive structure models can robustly
represent complicated context dependencies between acoustic fea-
tures and context labels using multiple decision trees. However,
it is unknown what kinds of contexts have additive dependencies
on acoustic features. A context clustering algorithm for the addi-
tive structure [4] has been proposed to automatically extract addi-
tive components from the training data. The algorithm simultane-
ously constructs multiple decision trees and also can automatically
determine an appropriate number of additive components. The ef-
fectiveness of this method in HMM-based speech synthesis has been
reported [5].

Although the number of components can be automatically de-
termined through the context clustering, there is a constraint that a
fixed number of additive components are used for generating acous-
tic features. However, it is natural to assume that an appropriate
number of additive components depends on contexts. That is, it is
expected that some context dependent models require many additive
components to represent variations in acoustic features and others
do not. To represent such context dependencies appropriately, we
propose a technique which enable us to extract additive components
affecting arbitrary contextual sub-spaces as well as the entire contex-
tual space. In the proposed clustering algorithm, the partial additive
components are created on demand at an arbitrary node in the context
clustering to increase the likelihood. Therefore, the number of ad-
ditive components corresponding to each context dependent model
is automatically determined from the resultant structure of decision
trees. The model structure with various number of additive com-
ponents yields larger combination of components than the standard
additive structure with the same number of parameters. This means
that it can effectively represent the context dependencies with a lim-
ited amount of the training data.

The rest of this paper is organized as follows. Section 2 de-
scribes the standard additive structure models. Section 3 proposes
the technique which enable us to extract contextual partial additive
components. Section 4 presents the experimental results. Section 5
presents concluding remarks and future research.

2. ADDITIVE STRUCTURE MODELS

In additive structure models, an acoustic feature vector o; at time ¢
is assumed to be generated by the sum of additive components:

N
o= o" (1
n=1

where o§”> denotes the n-th additive component. If each component
is independent and generated according to a Gaussian distribution,
the probabilistic density function of acoustic features is represented
by the convolution of the additive components [6] so that

P(Of‘ch/\):-/v(otl#cpgct) (2)
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Fig. 1. Example of a contextual additive structure.

The output probability distribution is a Gaussian distribution whose
mean vector and covariance matrix are respectively given as

N N
po, = > p, B, =Y B 3)
n=1 n=1

where Hﬁf) and 25,7:) are respectively the mean vector and covari-

(n)

ance matrix of the n-th component o; ’ given a context ¢;. Since

each additive component oi") has different context dependencies,
each component has a different decision tree that represents tying
structures of model parameters p,, and 3, .

Figure 1 outlines the generative process for the triphone feature
in additive structure models. The effectiveness of the proposed tech-
nique depends on whether acoustic features actually have an addi-
tive structure of contexts. When acoustic features have an additive
structure, a number of different distributions can be efficiently rep-
resented by a combination of fewer distributions. Furthermore, it
is also effective to predict the acoustic features of unseen contexts.
Section 3 describes how to extract the additive structure in detail.

2.1. EM algorithm for additive structure models

The Maximum Likelihood (ML) parameters of additive component
distribution can be estimated with the EM algorithm. Using the
statistics obtained using the E-step, the Q-function with respect to
the output probability distribution can be written as

T

> qile)log P(o: | e = ¢, \)

t=1ceC

T
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where K is the dimensionality of feature vectors, C' denotes all con-
texts observed in the training data, and ~y;(c) is the state occupancy
probability. In Eq. (4), the state index is ignored for simplicity of
notation.

By focusing on a dimension of feature vectors and equating the
first partial derivative of Eq. (4) to O with respect to the mean pa-
rameters of all components gt = [u1, ..., uar] |, the solution of g
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Fig. 2. Examples of standard and partial additive structures.

is given by a set of linear equations [5], where M is the sum of all
leaf clusters of all decision trees. In this paper, independent tying
structures of covariance parameters are constructed [7]. Covariance
parameter tying is also applied to reduce the computational cost and
the tied covariance parameter can be estimated analytically [5].

2.2. Context clustering for multiple decision trees

A context clustering algorithm for multiple decision trees has been
proposed to automatically extract the additive structure from the
training data [4]. It is easy to construct a decision tree if the tree
structures and parameters of the other components are fixed. How-
ever, as the tree structures of the additive components interact with
each other to compose the output probabilities, the multiple decision
trees for additive components should be constructed simultaneously.
The four steps in the procedure for the clustering algorithm are as
follows:

STEP 1. Set the number of trees N to one, and create the root node
of the first tree and compute its likelihood.

STEP 2. Evaluate questions at all leaf nodes of all trees and a root
node representing a new tree. The likelihood after the node is
split is calculated by estimating the ML parameters of all leaf
nodes of all trees.

STEP 3. Select the pair of a node and question based on the ML
criterion, and split the node into two by applying the question.
The model parameters of all leaf nodes are updated by the ML
parameters.

STEP 4. If the change of likelihood after the node is split is below
a predefined threshold, stop the procedure. Otherwise, go to
Step 2.

Since in this technique an appropriate splitting of a leaf node
or a root node representing a new tree is selected based on the ML
criterion in STEP 2. A splitting of a root node is equivalent to a
extracting a new component. Thus, an appropriate number of com-
ponents can be automatically determined with context clustering for
multiple decision trees based on the ML criterion.

3. CONTEXTUAL PARTIAL ADDITIVE STRUCTURE

Although additive structure models can automatically determine the
number of components, there is a constraint that a fixed number
of additive components are used for generating acoustic features.
However, it is natural to assume that an appropriate number of ad-
ditive components depends on contexts. That is, is, it is expected
that some context dependent models require many additive compo-
nents to represent variations in acoustic features and others not. To
represent such context dependencies, we introduce partial additive
components affecting arbitrary contextual sub-spaces.
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Fig. 3. The effect of an partial additive structure in distribution mod-
eling of acoustic features.

In the proposed technique, a partial additive component is repre-
sented by a decision tree attached to an internal node of another deci-
sion tree. Figure 2 shows examples of the standard and partial addi-
tive structure. The standard technique extracts additive components
for the only entire contextual space corresponding to a root node.
The proposed technique can attach the additive component to an ar-
bitrary node including internal nodes as well as root nodes. Figure
3 shows the effect of a partial additive structure in distribution mod-
eling of acoustic features. The gray regions represent the contextual
spaces affected by the second additive component “Comp. 2”. The
second component of the partial additive structure affects the contex-
tual sub-space corresponding to the internal node of the first com-
ponent, even though the second component of the standard struc-
ture always divides the entire contextual space. The proposed model
structure yields larger combination of components than the standard
additive structure with the same number of parameters.

Considering the relation between the standard and partial addi-
tive structure models, an arbitrary partial additive structure can be
converted to a global additive component, because a partial decision
tree can be expanded to a global decision tree by copying the upper
structure of the parent decision tree. In this case, the partial decision
tree is represented as a sub-tree at the internal node of the copied tree
and the other nodes are assumed to have zero mean and variance.
Therefore, the proposed structure can be regarded as special case of
the standard additive structure. This means there is no advantage of
the proposed technique in the representation of decision trees. How-
ever, the proposed technique provides an efficient representation for
partial context dependencies with a smaller number of model param-
eters. Furthermore, if there exists an optimal structure representing
partial context dependencies, it is difficult to extract an equivalent
global additive structure by using the context clustering algorithm
described in Section 2.2, due to the greedy strategy. Therefore, an
explicit representation of partial context dependencies and a context
clustering algorithm for extracting partial additive structures are re-
quired.

The context clustering algorithm for the partial additive struc-
ture can be derived by modifying STEP. 2 in the standard context
clustering algorithm for multiple decision trees as follows:

STEP 2. Evaluate questions at all leaf nodes of all trees and a root
node representing a new tree. In addition, all candidate root
nodes representing partial additive components are also eval-
uated at all internal nodes. The likelihood after the node split-
ting is calculated by estimating the ML parameters of all leaf
nodes of all trees.

The difference with the standard context clustering algorithm for
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multiple decision trees is to explicitly evaluate all questions at all
internal nodes for constructing a new tree representing a partial ad-
ditive component. The number and position of additive components
corresponding to each context dependent model are automatically
determined on demand to increase the likelihood based on the ML
criterion. Thus, the proposed technique can effectively represent the
context dependencies with a limited amount of the training data. For
an unseen context, the corresponding distribution can be found by
answering the question from the top-node as the standard decision
tree. However, if there is an attached decision tree at the current
node, the number of components for the current context is increased
and the corresponding distributions must be searched for in both the
parent and attached decision trees.

3.1. Related model structures

The additive structure models include different model structures as
special cases. If the additive structure is restricted to having a single
decision tree, it becomes the conventional decision tree (tree regres-
sion). Linear regression models [8] can also be represented by ad-
ditive structure models, which consist of additive components with
only one contextual question. Therefore, additive structure models
can be regarded as intermediate models between tree regression and
linear regression. Partial decision trees in the proposed technique
inherit this property. Constrained Tree Regression (CTR) [9] also
has a strong relation to the proposed model structure. CTR has an
additive component corresponding to a contextual question at each
intermediate node, and feature vectors are predicted by adding all
additive components from the top-node to leaf-node. Although CTR
can also represent a variable number of additive components, sim-
ilar to the proposed structure, only a sub-set of standard additive
structure models can be represented by CTR because it integrates
the structures of tree regression and linear regression into a single
tree structure. As mentioned above, partial additive structure models
have the same ability in the representing model structures as standard
additive structure models.

4. EXPERIMENT

4.1. Experimental conditions

Subjective listening tests were conducted to evaluate the effective-
ness of the proposed technique. From the phonetically balanced 503
sentences from the ATR Japanese speech database B-set, uttered by
male speaker MHT, 450 sentences were used for training. The re-
maining 53 sentences were used for evaluation. The speech data was
down-sampled from 20 to 16 kHz and windowed at a frame rate of
5-ms using a 25-ms Blackman window.

The feature vectors consisted of spectral and Fp feature vectors.
The spectrum parameter vectors consisted of 39 STRAIGHT mel-
cepstral coefficients including the zero coefficient and their delta and
delta-delta coefficients. The excitation parameter vectors consisted
of log Fp and its delta and delta-delta. A five-state, left-to-right,
no-skip structure with a diagonal covariance matrix was used for
the hidden semi-Markov model. Additive structure modeling was
applied to only the spectrum parameters, and the excitation parame-
ters were modeled with conventional multi-space probability distri-
bution HMMs [10]. The tying structures for excitation parameters
were constructed with the conventional decision tree based context
clustering.

Three techniques were compared; CONV: the conventional de-
cision tree, ADD: the standard additive structure models, and PADD:



Table 1. Number of decision trees in each state. The number of
decision trees In PADD consists of that attached to the root node and
internal nodes.

CONV | ADD PADD
State 1 1 5 10 (root 4 + internal 6)
State 2 1 7 13 (root 2 + internal 11)
State 3 1 7 14 (root 3 + internal 11)
State 4 1 5 13 (root 3 + internal 10)
State 5 1 6 9 (root 3 + internal 6)
Total 5 30 59 (root 15 + internal 44)

the proposed partial additive structure models. Covariance parame-
ter tying [5] was applied to ADD and PADD for reducing computa-
tional cost.

The minimum description length (MDL) criterion [3] was used
to select splitting a node in all techniques. In the proposed technique,
the increase in the the number of parameters of splitting a leaf node
and extracting a new component differs. The increase in the num-
ber of parameters by extracting a new component doubles compared
with that by splitting a leaf node. Penalty terms of the description
length then grows large in extracting a new component. The MDL
criterion was used to determine the size of the decision trees.

Ten subjects participated in these listening tests. Twenty sen-
tences were randomly selected from the 53 sentences for each sub-
ject. The subjects were asked to rate the naturalness of the syn-
thesized speech on a scale from one (completely unnatural) to five
(natural). The experiment was carried out using headphones in a
soundproof room .

4.2. Experimental results

Table 1 lists the number of decision trees in each HMM state and
total number of decision trees in each technique. The number of
decision trees in PADD consists of that attached to the root node
and internal nodes corresponding to the global and partial additive
components respectively. It can be seen from Table 1 that the ad-
ditive structure models constructed multiple trees for each state in
the context clustering, even though they can select single tree struc-
tures. This results suggest that there is an additive structure in the
training data. Furthermore, PADD created decision trees at internal
nodes as well as the root node. This means that the proposed clus-
tering algorithm extracted partial additive components to efficiently
represent context dependencies in the training data. Table 2 lists the
number of leaf nodes, the total number of parameters and the aver-
age likelihoods per frame of training (450 sentences) and test data
(53 sentences). Note that CONV has double number of parameters
in each leaf node compared with ADD and PADD, because the co-
variance parameter tying was applied to ADD and PADD. In Table 2,
the likelihood of CONYV in the training and test data was the highest
of the three techniques. This is because covariance parameter tying
was not applied to CONV and the total number of parameters was
larger than other two techniques. It can also be seen from Table 2
that ADD and PADD have almost the same number of parameters
and there is not the significant difference in the likelihood of ADD
and PADD.

Figure 4 shows the subjective listening results. In Figure 4,
ADD and PADD achieved better subjective scores than CONV that
has larger number of parameters. This means that additive structure
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Table 2. Number of leaf clusters, total number of parameters and
average likelihood per frame of training and test data.

CONV ADD PADD
Number of leaf nodes 814 1391 1446
Total number of parameters | 195,360 | 166,920 | 173,520
Ave. likelihood (training) 138.65 132.15 132.36
Ave. likelihood (test) 136.10 130.07 130.27
3.3} 95% confidence interval —— 3.15
3.04 |
3.1t | |
@ |
S29t 2.76
|
2.7t |
251
CONV ADD PADD

Fig. 4. Mean opinion scores for synthesized speech obtained by con-
ventional, standard and proposed techniques.

models could represent complicated context dependencies. It can be
seen from Figure 4 that PADD achieved better subjective scores than
ADD. These results mean that the proposed technique can represent
appropriate context dependencies with the contextual partial addi-
tive structure, even though ADD and PADD have almost the same
number of parameters. Moreover, the proposed technique could au-
tomatically determine the number of components affecting contex-
tual sub-spaces as well as the entire contextual space and effectively
represent the context dependencies with the training data.

5. CONCLUSIONS

This paper proposed a spectral modeling technique based on the con-
textual partial additive structure. In the standard additive structure
models, it is difficult to extract partial additive components which
affects arbitrary contextual sub-spaces. The proposed technique can
extract the contextual partial additive structure. Furthermore, the
number of partial additive components as well as standard global ad-
ditive components can be automatically determined with the training
data. In the experiment, the proposed technique outperformed the
conventional technique and the standard additive structure models.
Experiments on other datasets including style, emotions, etc, will be
a future work.
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