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ABSTRACT

This paper proposes a technique for creating target speaker’s
expressive-style model from the target speaker’s neutral style speech
in HMM-based speech synthesis. The technique is based on the style
adaptation using linear transforms where speaker-independent trans-
formation matrices are estimated in advance using pairs of neutral-
and target-style speech data of multiple speakers. By applying the
obtained transformation matrices to a new speaker’s neutral-style
model, we can convert the style expressivity of the acoustic model
to the target style without preparing any target-style speech of the
speaker. In addition, we introduce a speaker adaptive training (SAT)
framework into the transform estimation to reduce the acoustic dif-
ference among speakers. We subjectively evaluate the performance
of the style conversion in terms of the naturalness, speaker similarity,
and style reproducibility.

Index Terms— HMM-based expressive speech synthesis, style
conversion, style adaptation, linear transform, speaker adaptive
training

1. INTRODUCTION

In the emotional speech synthesis research area, there are many stud-
ies for generating expressive speech from neutral-style speech by
converting the global/local prosodic characteristics such as average
fundamental frequency (F0) and speaking rate using heuristic rules
[1]. These rule-based approaches are effective in some typical styles
such as happy and sad. However, the conversion performance highly
depends on the target style, and the style expressivity is not always
satisfactory in some styles.

Recently, several techniques have been proposed to improve the
conversion performance of the prosodic features [2, 3]. In [2], some
linguistic features were integrated using CART to map the prosody
distributions between neutral and emotional speech. In [3], an F0
segment selection approach was proposed where the F0 conversion
was expressed as a search problem under contextual constraints.
However, the evaluations of these techniques were conducted only
under a speaker-dependent condition and the speaker-independent
case was not discussed where a target speaker’s expressive speech is
not available.

In this paper, we propose a novel technique for converting an
arbitrary speaker’s neutral-style acoustic model to the target style
without using any expressive speech of the target speaker. The tech-
nique is based on HMM-based speech synthesis with style adapta-
tion [4] and average voice model [5]. In the style adaptation, the
transforms estimated between neutral- and target-style speech of the

same speaker can be viewed as style conversion functions. How-
ever, the obtained transforms are speaker-dependent, and the perfor-
mance is not always satisfactory when we apply the transforms to
the neutral-style model of another speaker. To alleviate this prob-
lem, we extend the idea of the style adaptation of a certain speaker
to the speaker-independent case by estimating the linear transforms
with multiple speaker’s data of neutral and target styles. We also in-
troduce the speaker adaptive training (SAT) [6, 7] into the transform
estimation to improve the conversion performance.

2. STYLE CONVERSION OF ACOUSTIC MODEL USING
SPEAKER-INDEPENDENT LINEAR TRANSFORMS

An outline of the proposed style conversion is shown in Fig. 1.
The style conversion has two phases, the first is to obtain speaker-
independent linear transforms for the style conversion, and the
second is to convert the style expressivity of the target speaker’s
neutral-style model by applying the obtained transforms.

In the first phase, we prepare training data of multiple speakers,
where each speaker utters neutral- and target-style speech. We train
an average voice model using the neutral-style speech and estimate
transforms from the neutral-style to the target-style using multiple
speakers’ data of target-style in a style adaptation framework [4].
In this study, we use hidden semi-Markov model [8] and choose a
structural maximum a posteriori linear regression (SMAPLR) [9, 10]
as an algorithm of the model adaptation. Since the linear transforms
are estimated using multiple speakers’ data of the neutral and the
target styles, this process can be viewed as the speaker-independent
linear transformation.

In the SMAPLR, the mean parameters of output and state-
duration pdfs, μ ∈ RD×1 and m, of the neutral-style average voice
model λ are transformed as

μ̃ = Jξ (1)

m̃ = Eη (2)

where Λ = (J ,E) represents a set of transformation matrices
J ∈ RD×(D+1) and E ∈ R1×2 corresponding to output and state-
duration probability density functions (pdfs), respectively. D is the
dimensionality of the feature vector, ξ = [μ� 1]� ∈ R(D+1)×1,
and η = [m 1]� ∈ R2×1. The optimal Λ̂ is estimated using MAP
criterion as

Λ̂ = argmax
Λ

P (Λ|O, λ) = argmax
Λ

P (Λ) P (O|λ, Λ) (3)
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Fig. 1. An outline of speaker-independent style conversion.

where O is observation data for the adaptation, P (Λ) is a prior pdf
in MAP estimation and is given by

P (Λ) ∝ |Ω|−(D+1)/2 |Ψ|−D/2 τ−1
p |ψ|−1/2

× exp

j
−1

2
tr (J −G)� Ω−1 (J −G)Ψ−1

ff

× exp

j
−1

2
tr (E −H)� τ−1

p (E −H)ψ−1

ff
(4)

where Ψ ∈ R(D+1)×(D+1), G ∈ RD×(D+1), ψ ∈ R2×2, and
H ∈ R1×2 is hyper parameters for the prior distribution. In this
study, we use Ω = τbID+1, Ψ = ID+1, and ψ = I2, which is the
same as the setting in the previous study [10]. τb and τp are positive
constant values to control the effect of the prior distribution in MAP
estimation, and G and H are transformation matrices in the parent
node of J and E, respectively.

In the second phase, we apply the speaker-independent trans-
forms to the target speaker’s neutral-style model and obtain the
target-style model of the target speaker. Finally, we generate syn-
thetic speech from the converted model using the ordinary parameter
generation method of the HMM-based speech synthesis. It is noted
that the proposed technique does not require any target-style speech
of the target speaker in generating the synthetic speech of the style,
which is an advantage of the technique compared to the conventional
style adaptation approach.

3. NORMALIZING SPEAKER DIFFERENCE
IN TRANSFORM ESTIMATION

3.1. CMLLR-based SAT for style conversion

From a preliminary experimental result, we found that the natural-
ness of the synthetic speech was degraded when the style character-
istics of respective speakers in the transform estimation were much
different from each other. To alleviate the problem, we employ the
idea of speaker adaptive training (SAT) [6, 7] that is a well-known
speaker normalization technique for the model training in ASR and

TTS. In the ordinary SAT for speech synthesis, the parameters of an
average voice model are refined using the transforms from the av-
erage voice model to respective speakers’ model. By contrast, the
transform set Λ is refined in the proposed SAT for style conversion.

First, we create the target-style average voice model λ′ by apply-
ing the speaker-independent linear transforms to the neutral-style av-
erage voice model. Then, we estimate speaker-dependent transform
sets θ(f) = (W (f),X (f)) from λ′ to the target-style data of each
speaker f where 1 ≤ f ≤ F and F is the number of speakers of the
average voice models. W (f) ∈ RD×(D+1) and X (f) ∈ R1×2 are
transformation matrices of output and state-duration pdfs for speaker
f .

To simplify the derivation of estimation formulas based on SAT,
we use feature-space linear transformation based on constrained
maximum likelihood linear regression (CMLLR) [11] as an adap-
tation algorithm to respective speakers. In the CMLLR, the t-th
frame observation o(f)

t ∈ RD×1 and duration d of speaker f are
transformed to õ(f)

t and d̃ as

õ
(f)
t = W (f)ζ

(f)
t (5)

d̃(f) = X (f)φ(f) (6)

where

ζ
(f)
t =

h
o

(f)�
t 1

i�
(7)

φ(f) =
h
d(f) 1

i�
(8)

Then, the output and state-duration pdfs of speaker f are given by

bi

“
o

(f)
t

”
=

1q
(2π)D |Σi|

exp

j
−1

2

“
W

(f)
i ζ

(f)
t − J iξi

”�

Σ−1
i

“
W

(f)
i ζ

(f)
t − J iξi

”o
(9)

pi

“
d(f)

”
=

1p
2πσ2

i

exp

j
− 1

2σ2
i

“
X

(f)
i φ(f) −Eiηi

”2
ff

(10)

where Σi ∈ RD×D and σi are variance parameters of output and
state-duration pdfs of the target-style average voice model, respec-
tively.

3.2. Estimation of speaker-normalized linear transforms

When the optimal speaker transform set Θ̂ =
n

θ̂(1), · · · , θ̂(F )
o

is

given by the CMLLR described in Sect. 3.1, a refined style transform
set Λ̂ is estimated using a SAT framework as

Λ̂ = argmax
Λ

P (Λ)
FY

f=1

P
“
O(f)|λ, θ̂(f), Λ

”
(11)
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The auxiliary functions of output and state-duration pdfs for the EM
algorithm are given by

Qb

`
Λ; Λ̄

´
=

RX
r=1

FX
f=1

T (f)X
t=1

tX
d=1

γd
r (t)

×
tX

s=t−d+1

ln br

“
o(f)

s

”
+ ln P (Λ) (12)

Qp

`
Λ; Λ̄

´
=

RX
r=1

FX
f=1

T (f)X
t=1

tX
d=1

γd
r (t) ln pr (d) + lnP (Λ) (13)

where transforms are tied across R pdfs. By differentiating the aux-
iliary functions Qb and Qp with respect to J and E, and equating
the results to zero, we have

ĵl =

0
@ RX

r=1

FX
f=1

T (f)X
t=1

tX
d=1

γd
r (t)

Σr (l)

tX
s=t−d+1

ŵ
(f)
l ζ(f)

s ξ�r + τ−1
b gl

1
A

×
0
@ RX

r=1

FX
f=1

T (f)X
t=1

tX
d=1

dγd
r (t)

Σr (l)
ξrξ

�
r + τ−1

b ID+1

1
A

−1

(14)

Ê =

0
@ RX

r=1

FX
f=1

T (f)X
t=1

tX
d=1

γd
r (t)

σ2
r

X̂
(f)
φ

(f)
d η�

r + τ−1
p H

1
A

×
0
@ RX

r=1

FX
f=1

T (f)X
t=1

tX
d=1

γd
r (t)

σ2
r

ηrη
�
r + τ−1

p I2

1
A

−1

(15)

where jl ∈ R1×(D+1) is the l-th row vector of J , and gl ∈
R1×(D+1) is l-th row vector of G. The estimation process of
transformation matrices using SAT is summarized as follows:

1. Estimate the initial transform set Λ for style conversion.

2. Obtain the target-style average voice model λ′ by applying Λ
to the neutral-style average voice model λ.

3. Estimate the speaker transform set Θ using λ′ and the target-
style data of respective speakers.

4. Update Λ given Θ using Eqs. (14) and (15).

5. Repeat step 2 to 4 until Λ and Θ converge.

4. EXPERIMENTS

4.1. Experimental conditions

We evaluated the performance of the proposed style conversion tech-
nique using neutral- and appealing-style speech data. We used par-
allel speech data of three female professional narrators described in
[12]. Furthermore, we recorded additional parallel data of two fe-
male professional narrators, and the total number of speakers was
five (speaker #1 to #5). Each speaker uttered 176 sentences in both
neutral and appealing styles. The appealing-style speech was uttered
under a condition where a salesclerk spoke to customers to push
some products through mass media commercials. Speech signals
were sampled at a rate of 16kHz and the frame shift was 5 ms. We
used STRAIGHT analysis [13] for speech feature extraction, and ex-
tracted spectral envelope, F0, and aperiodicity features. The spectral

Table 1. Distortions of mel-cepstral, log F0, and duration between
original and synthetic speech of the target style.

Target Method Mcep LogF0 Dur

speaker [dB] [cent] [msec]

#1 w/o SAT 6.87 406 29.8

with SAT 6.62 406 31.4

#2 w/o SAT 6.77 508 28.5

with SAT 6.29 480 28.7

#3 w/o SAT 7.11 452 31.7

with SAT 6.72 429 34.3

#4 w/o SAT 7.35 317 44.5

with SAT 7.05 312 35.8

#5 w/o SAT 7.17 434 34.1

with SAT 6.84 436 31.1

Average w/o SAT 7.05 423 33.7

with SAT 6.70 413 32.2

envelope was then converted to mel-cepstral coefficients using a re-
cursion formula. The aperiodicity feature was also converted to aver-
age values for five frequency sub-bands, i.e., 0–1, 1–2, 2–4, 4–6, and
6–8 kHz. As a result, the feature vector consisted of 39 mel-cepstral
coefficients including the zeroth coefficient, log F0, five-band aperi-
odicity values, and their delta and delta-delta coefficients. The total
dimensionality was 138. We used five-state left-to-right HSMM with
no skip topology. The output distribution in each state was modeled
with a single Gaussian probability density function, and covariance
matrices of these models were assumed to be diagonal. In addition,
we used SAT algorithm to train the neutral-style average voice model
[7].

4.2. Objective evaluation

We chose one speaker as a target speaker and used the rest of the
speakers to estimate speaker-independent transforms for style con-
version, and repeated this evaluation five times by changing the tar-
get speaker. Furthermore, we divided 176 utterances into 6 subsets,
each of which contains about 30 utterances, and conducted six-fold
cross-validation to obtain evaluation results for each target speaker.
As the objective measure, we used mel-cepstral distance (Mcep),
root mean square errors of log F0 (LogF0) and duration (Dur). In
this experiment, we compared these objective measures for the pro-
posed technique with and without SAT.

Table 1 shows the results for respective speakers and their av-
erage. From the result, first we see that the conversion with SAT
outperformed that without SAT in terms of the total conversion per-
formance. In detail, it is seen that the spectral distortions were con-
sistently reduced by using the SAT. As for the prosody conversion,
the transform estimation with SAT also reduced the distortions espe-
cially when the distortion values were relatively large, which indi-
cates the SAT is effective for the speakers whose acoustic character-
istics are much different from the average voice model.
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Fig. 2. Result of the preference test with and without SAT.

4.3. Subjective evaluation

In the subjective evaluation tests, we used parameter generation
algorithm considering global variance (GV) [14] to improve the
perceptual quality of the synthetic speech. Since we cannot use
any target-style speech of the target speaker, the target speaker’s
target style GV model need to be construct without these speech
data. Therefore we first constructed an average voice GV model
using multiple speaker’s neutral-style speech data in the framework
of training for context-dependent GV model [15]. Secondly, we
estimated speaker-independent transform from the neutral style to
the target style using a style adaptation framework. Finally, by ap-
plying the estimated transform to target speaker’s neutral-style GV
model, we obtained target speaker’s neutral-style one. The number
of participants for subjective evaluation was seven.

First, we compared the naturalness of the synthetic speech with
and without SAT through a preference test to examine the effective-
ness of SAT-based transform estimation in style conversion. We
randomly chose eight samples of synthetic speech with and with-
out SAT for each participant. Then, each participant listened to the
speech samples of the two methods in random order and was asked
which sample was more natural. We performed the evaluation for
two types of synthetic speech. One was synthetic speech where all
speech features are converted to the target style. The other was syn-
thetic speech where the spectral feature was not converted and that
of the neutral-style was used instead. Fig. 2 shows the result. We
can see that the naturalness of the synthetic speech was significantly
improved by using SAT.

Next, we examined the performance of the proposed technique
with SAT in terms of the naturalness, speaker similarity, and style
reproducibility. In this experiment, we evaluated synthetic speech
samples with and without spectrum transformation to examine the
effective of spectrum transformation in style conversion. For each
participant, we randomly chose eight samples of synthetic speech
for each method. Then, participants rated the naturalness, speaker
similarity, and style reproducibility of test samples using a five-point
scale: “1” for bad, “2” for poor, “3” for fair, “4” for good, and “5” for
excellent. In the evaluation of speaker similarity, synthetic speech

 1

 2
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Style
reproducibility

S
c
o
re

Speaker
similarity

Naturalness

with spec. transform

w/o spec. transform

95% confidence interval

Fig. 3. Mean opinion scores of synthetic speech on naturalness,
speaker similarity and style reproducibility with and without spec-
trum transformation.

generated from target speaker’s neutral-style model was used as the
reference. Fig. 3 shows the result. From the result, we see that the
proposed technique generated synthetic speech similar to the target
speaker and style while keeping the naturalness. It is also found that
the spectral conversion slightly improved the style reproducibility
but degraded the naturalness.

5. CONCLUSIONS

We have proposed a novel style conversion technique for creating
expressive-style model of a certain speaker without using his/her
target-style data in an HMM-based speech synthesis framework. The
technique estimates speaker-independent linear transforms for the
style conversion using multiple speakers’ data of neutral and target
styles with a SAT framework. The experimental results have shown
that the SAT-based speaker normalization in the transform estima-
tion is effective and the performance of the proposed technique with
prosody conversion is between fair and good in terms of the natural-
ness, speaker similarity and style reproducibility. The future work
will include the evaluation of the proposed technique using speech
data of other styles.
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