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ABSTRACT

In order to improve the intelligibility of HMM-generated Text-to-
Speech (TTS) in noise, this work evaluates several speech enhance-
ment methods, exploring combinations of noise-independent and -
dependent approaches as well as algorithms previously developed
for natural speech. We evaluate one noise-dependent method pro-
posed for TTS, based on the glimpse proportion measure, and three
approaches originally proposed for natural speech - one that esti-
mates the noise and is based on the speech intelligibility index, and
two noise-independent methods based on different spectral shaping
techniques followed by dynamic range compression. We demon-
strate how these methods influence the average spectra for different
phone classes. We then present results of a listening experiment with
speech-shaped noise and a competing speaker. A few methods made
the TTS voice even more intelligible than the natural one. Although
noise-dependent methods did not improve gains, the intelligibility
differences found in distinct noises motivates such dependency.

Index Terms— Speech intelligibility in noise, HMM-based
speech synthesis

1. INTRODUCTION

With growing numbers of applications exploiting speech technolo-
gies, real-life situations inevitably arise in which listeners hear
speech in noise. Accordingly, there is great interest in speech in-
telligibility enhancement algorithms for both natural and synthetic
speech. Many studies have been conducted in this field, with some
approaches motivated by phenomena observed in human speech
production: boosting of the consonant-vowel power ratio [1, 2, 3],
spectral tilt flattening and formant enhancement [4, 5, 6] and ma-
nipulation of duration and prosody [7]. While the above examples
are noise-independent, other approaches exploit knowledge of the
noise masker. However, since human speech production adaptations
to different noise conditions are less known, work that makes use of
the noise knowledge is mostly based on the perception of speech in
noise: modification of the local signal-to-noise ratio (SNR) [8, 9],
optimisation of the spectral audio power reallocation based on the
speech intelligibility index [10], spectral optimization based on the
glimpse proportion measure [11, 12], a spectro-temporal optimiza-
tion based on a perceptual distortion measure [13] and the insertion
of small pauses [14]. Statistical approaches to speech enhancement
using recordings of speech in noise include voice conversion [15]
and adaptation [5]. One noise-dependent approach that is of primary
focus in the present work is Mel cepstral modification based on the
glimpse proportion measure [12].

While TTS voices can be as intelligible as natural speech in
clean conditions, intelligibility drops quite rapidly in adverse con-
ditions [16], more strongly motivating the use of intelligibility en-
hancement methods and potentially requiring knowledge of the noise
masker. However, noise-dependent methods, either for natural or
TTS voices, have only recently been proposed and it remains rela-
tively unknown to what extend exploiting spectro-temporal charac-
teristics of the masker is useful. To evaluate a range of enhancement
algorithms, both noise-dependent and independent, [17] describes
a large scale listening experiment with 5 methods for natural speech
and 2 for TTS evaluated under the same conditions (speech and noise
material). In this evaluation, it was observed that noise-independent
spectral shaping with Dynamic Range Compression (SSDRC) [6]
provided the best results of the modifications on natural speech while
[10], although noise-dependent, did not perform as well. It was also
observed that a noise-dependent approach [12] applied to a TTS
voice was as intelligible as a Lombard-adapted voice in some sta-
tionary noise conditions, but still not as intelligible as natural speech.
A significantly large intelligibility gap was also confirmed between
TTS and the natural voice in almost all noise conditions.

In this paper, we investigate whether intelligibility enhancement
methods originally proposed for natural speech can also improve
intelligibility of a TTS voice and help bridge this gap. Further-
more, we seek to discover whether it is possible to improve a noise-
independent method [6] and a noise-dependent method [12] by com-
bining them, effectively offering insight on the extent to which noise
dependency is required in terms of achieving significant intelligibil-
ity gains.

In Section 2 we present the details of the methods we are com-
paring and in Section 3 we show of how we built the TTS voice used
in the evaluation. Section 4 we present the methods spectral gains at
a phone level. Section 5 shows the listening experiment design and
results followed by conclusions in Section 6.

2. INTELLIGIBILITY ENHANCEMENT METHODS

We evaluate a total of seven TTS voice styles, as shown in Ta-
ble 1: two noise-independent (SS-DRC [6] and SSE-DRC), two
noise-dependent (TTSGP [12] and OptSII [10]) and two method
combinations (TTSGP-DRC and TTSGP-SS-DRC). The TTSGP
method is applied directly to the generated spectral parameters, all
other methods work as a post processing of the waveform generated
by the TTS model (represented by the addition of the acronym TTS-
). The following describes each of the methods in more detail. Audio
samples can be found at: https://wiki.inf.ed.ac.uk/CSTR/TtsHc.

SS-DRC [6] performs spectral shaping (SS) followed by dy-
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Style Approach ND
TTS unmodified TTS no
TTS-SS-DRC spectral shaping (SS) followed by no

dynamic range compression (DRC)
[6] applied to TTS

TTS-SSE-DRC extended version of SS (SSE) no
followed by DRC applied to TTS

TTS-OptSII SII optimisation [10] applied to TTS yes
TTSGP Glimpse-optimised TTS [12] yes
TTSGP-DRC TTSGP followed by DRC yes
TTSGP-SS-DRC TTSGP followed by SS-DRC yes

Table 1. Speech styles tested. ND: noise dependency.

namic range compression (DRC). Spectral shaping consists of two
cascaded subsystems which are adaptive to the probability of voic-
ing: (i) an adaptive sharpening where the formant information is
enhanced, and (ii) an adaptive pre-emphasis filter. A third fixed
spectral shaping is used to prevent attenuation of high frequencies in
the speech signal during the signal reproduction. The output of the
spectral shaping system is then input to the DRC, inspired by com-
pression strategies used in sound recording and reproduction, audio
broadcasting as well in amplification techniques in hearing aids [18].

The extended spectral shaping (SSE) is carried out on all voiced
frames and consists of three components: (i) a fixed filter to in-
crease the spectral energy gain in certain frequency bands, (ii) peak
enhancement via cepstral liftering and (iii) slight formant shifting
via frequency warping. First, the fixed filter is bi-modal, with the
most gain (12 dB) between 1-4 kHz, mimicking the spectral gains
observed in Lombard speech [19], and the secondary mode has ap-
proximately half of the maximal gain and is concentrated between
5.5-7.5 kHz. Second, the peak-enhancement follows the peak-
weighted cepstral lifter (α=0.85) presented in [20] for enhancement
in speech recognition. Third, the frequency warping shifts the first
and second formants moderately (less than 100 Hz), on average
upwards in frequency. The frequency warping function is constant
and derived from observations on the expanded vowel space of two
speakers in a separate clear speech corpus involving the Harvard
sentences.

In the OptSII method [10, 21] the audio power of the speech sig-
nal is spectrally reallocated with respect to the speech intelligibility
index (SII) [22]. A recursive closed-form optimisation scheme cal-
culates, for each time frame, the spectral weights in 21 Bark-scaled
subbands which maximise the SII, given the current disturbance
spectrum levels, with the additional constraint of an unchanged
short-term audio power of the speech signal. Opposed to [10] and
the OptSII style used in [17], in this evaluation a moving average
noise estimator is used, which is also able to track CS noise.

To create the TTSGP style voice a Mel cepstral coefficient mod-
ification method [12] was applied to the spectral parameters gener-
ated by TTS models. The TTSGP method is based on the glimpse
proportion measure for speech in noise [23] and it works on each
individual time frame by modifying the first two Mel cepstral coef-
ficients (excluding the log-energy coefficient) in order to maximise
intelligibility of speech in noise, as given by an approximated ver-
sion of the glimpse proportion measure, with the constraint that the
energy in the frame should remained fixed. This implies that there is
no reallocation of energy across time frames, only within frequency
regions. Both convergence and distortion (10% relative increase in
the Euclidian distance between the auditory representation of origi-

nal and modified speech) are used as stopping criteria.

3. VOICE BUILDING

We build the synthetic voice using the statistical and parametric
HMM-based TTS framework [24]. To train the TTS models, we
used a dataset recorded by a British male speaker of plain read
speech. The unmodified baseline voice TTS was created from a high
quality average voice model adapted to 2803 sentences of this plain
speech database (three hours of material). The data was sampled at
48 kHz. We extracted the following features: 59 Mel cepstral co-
efficients, Mel scale F0 and 25 aperiodicity energy bands extracted
using STRAIGHT [25]. To model these features, we used a hidden
semi-Markov model. The observation vectors for the spectral and
excitation parameters contained static, delta and delta-delta values,
with one stream for the spectrum, three streams for F0 and one
for the band-limited aperiodicity. We applied the global variance
method [26] to compensate for the over smoothing effect caused by
the statistical nature of the acoustical modelling.

4. SPECTRAL GAIN ANALYSIS

As all methods modify the speech spectrum, while maintaining
prosody and duration, we present here acoustic analysis based only
in terms of spectrum gains. We calculated these gains at a phone
level and grouped the results in phone classes: vowels, nasals, ap-
proximants, stops and fricatives as seen in Fig.1. To obtain these
gains, we calculated the phone periodogram by extracting a 512
points discrete Fourier transform calculated at 20 ms hamming win-
dow at every 10 ms and averaged across the time frames within the
phone boundaries. The gain is then the difference of the phone
periodogram in dB for a certain method and the periodogram for the
unmodified TTS speech. For the noise-dependent methods, this was
calculated for speech-shaped noise (SSN) in the mid SNR condition:
results will differ for other noise types and levels.

For the majority of the methods, the average spectral gains can
be interpreted as a sort of correction filter that re-allocates spec-
tral energy and remains largely constant across phones for stationary
maskers like the SSN. For TTS-SS-DRC, the gain curve shape is de-
termined primarily by the SS fixed filter (seen for all phones), but the
effective scale of the gains is affected by the DRC. As we can see in
Fig.1, the SS fixed-filter has a very wide-flat gain between 1-4 kHz
and a gradual rolloff with increasing frequency. The gain curves
in TTSGP, TTS-SSE-DRC and TTS-OptSII, on the other hand, are
generally bi-modal. Note that the shape of the fixed-filters or gain
curves is most apparent with the voiced phones, particularly with
vowels. As observed in [21] at low SNR, OptSII shows a bandpass
characteristic, at mid SNR the general spectral shape of the speech
signal tends to follow the shape of the noise, and at higher SNR the
spectral gains are quiet low.

When comparing TTSGP and TTSGP-DRC, we can clearly
see the effect DRC has: gain reduction especially on vowels and
increased gain on stop and fricatives, while also determining an
upward-sloping linear-like gain curve shape on these last phones.
That is, DRC is re-allocating energy of frames in such a way as to
increase loudness of the unvoiced parts of speech.

Looking at the gain curves for the TTSGP-SS-DRC method, we
can see that the fixed-filter shape of SS dominates, but the GP gain
curve is apparent in the roundness of the first mode in the voices (first
three categories). More importantly, the scale of the gain is com-
pounded by combining the GP-SS as seen from the gain obtained on
the voiced segments.
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Fig. 1. Spectral gains (dB) obtained by each style over the unmodified baseline TTS.

5. INTELLIGIBILITY SCORES

We evaluated the seven different TTS styles displayed in Table 1 as
well as natural speech in a large listening experiment. We present
intelligibility scores in terms of word accuracy rates (WAR) in %
and equivalent intensity change (EIC) in dB.

5.1. Listening experiment

We added the seven synthetic styles shown in Table 1 and the nat-
ural speech to speech-shaped noise (SSN) and a female competing
speaker (CS) at 3 different signal to noise ratios (‘Low SNR’, ‘Mid
SNR’, and ‘High SNR’), estimated in pilot tests to be −9, −4 and
+1 dB for SSN, and−21,−14 and−7 dB for CS as used in [17]. In
order to obtain listening scores for word accuracy, we performed a
listening test with 88 native English speakers. Each participant heard
a set of 180 Harvard sentences, groups of 4 participants heard 15 dif-
ferent sentences for each listening condition (style/noise/SNR).

5.2. Results and discussions

Fig.2 shows the WAR calculated across all sentences for each style
in each listening condition, only content words were counted. The
dashed line corresponds to the WAR obtained by the natural speech
in that condition. The results are organized by noise type and level.

Overall, we can see that the most effective method is the TTS-
SS-DRC. It seems that the width and the gain of the primary mode
is very important as TTSGP, TTS-SSE-DRC and TTS-OptSII suffer
slightly as a result of too narrow or curved gains indicating that, for
example, the gains around 1 kHz should be higher. The secondary
mode does not seem to benefit intelligibility as much.

All methods except the TTSGP perform some sort of high fre-
quency boosting which enhances voiced segments. This significantly
aids intelligibility in the SSN and CS conditions as these noises have
stronger low frequency components. We can clearly see this intelli-
gibility gain by comparing the results of TTSGP-DRC and TTSGP:
DRC improves TTSGP performance in all noisy conditions, partic-
ularly for the SSN Mid SNR condition. TTSGP-DRC and TTS-
OptSII obtained similar performance: in SSN TTSGP-DRC per-
forms better in the mid and high conditions and no significant dif-
ferences appeared in CS. At lower SNRs larger gain at higher fre-
quencies (observed for TTS-SS-DRC and TTS-OptSII) seems to be
more beneficial most likely due to the masker.

Applying SS-DRC to a TTSGP style voice did not improve in-
telligibility as we see that TTSGP-SS-DRC either obtained worst or
similar WARs than TTS-SS-DRC. The compounded gain of SS-GP
seen in the acoustic analysis is most beneficial at Low SNR (specif-
ically for SSN). Otherwise, it seems excessive and TTSGP-DRC or
TTS-SS-DRC are sufficient.

A few methods were as intelligible as natural speech in SSN
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Fig. 2. Word accuracy rate (WAR) obtained with the listening evaluation. The dashed line corresponds to the WAR obtained by natural speech
in that condition. LSD is Fisher’s least significant difference.

Mid SNR and Low SNR condition. TTS-OptSII, TTS-SS-DRC and
TTSGP-SS-DRC were significantly more intelligible than natural
speech in SSN Low SNR. For the CS case TTS-SS-DRC was as
intelligible as natural speech at Low SNR. Natural speech in CS for
all SNRs was significantly more intelligible than the TTS styles. The
differences among the methods is attenuated in CS, that is the gains
obtained by the noise-independent method TTS-SS-DRC were at-
tenuated.

These results can be converted as equivalent intensity changes
(EIC) relative to normal natural speech in a dB scale as proposed
in [17]. Calculating this changes with respect to natural speech
we found that TTS-SS-DRC was 2.0 dB higher than natural speech
in SSN Low SNR, this gain is lower for the Mid SNR condition:
0.7 dB. The higher gain was obtained by TTSGP-SS-DRC: 2.25 dB
in SSN Low SNR. The gap between modified TTS and natural
speech is larger for CS, for Mid and High SNR conditions most
methods were at least 4 dB away from natural speech while for the
Low SNR condition TTS-SS-DRC decreased the gap to −0.7 dB.

As the speech material and the noise conditions were the same
as the ones used in [17] we can directly compare SS-DRC results
(OptSII noise estimation here is different than the system used in
[17]). SS-DRC applied to a TTS voice improves TTS performance
by 4.5 dB for SSN and 2.1 dB for CS (averaged across all SNRs)
compared to performance gains of 4.2 dB and 3.1 dB for natural
speech. Slight increase in performance 0.3 dB for TTS SSN but a
decrease for CS of 1.0 dB.

6. CONCLUSIONS

In this paper we presented results of a spectral analysis and a lis-
tening experiment evaluating speech intelligibility enhancement
methods applied to a HMM-generated Text-To-Speech (TTS) voice.
We evaluated two noise-independent approaches proposed for nat-
ural speech and based on spectral shapers followed by a dynamic

range compressor (TTS-SS-DRC and TTS-SSE-DRC) and two
noise-dependent methods both based on speech intelligibility ob-
jective measures: the glimpse proportion (TTSGP) and the speech
intelligibility measure (TTS-OptSII). We mixed these four voices,
two method combinations (TTSGP-DRC and TTSGP-SS-DRC)
and natural speech with speech-shaped noise (SSN) and competing
speaker (CS) maskers. Although the methods share similar spec-
tral gain shapes the absolute gains and its modal nature are quite
different. The most effective strategy in SSN was TTS-SS-DRC, a
noise-independent unimodal spectral gain combined with DRC. We
also observed that some styles were more intelligible than natural
speech, which shows how effective these methods can be when ap-
plied to a synthetic voice. In the CS scenario, all methods performed
significantly worse than natural unmodified speech, except for the
lower SNR condition where TTS-SS-DRC obtained similar gains to
natural speech. Compared to its performance with natural speech,
SS-DRC originally proposed in that scenario had similar results for
TTS in SSN and a slight drop in performance for CS.

While a noise-independent approach sufficiently increased intel-
ligibility in a stationary masker, performance dropped in the case of
the competing speaker: the noise type significantly influences intel-
ligibility. This motivates further exploration into tailoring methods
to specific spectro-temporal characteristics of the noise masker.
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