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ABSTRACT

This paper proposes a method to enhance the spectral clarity
of hidden Markov model (HMM)-based text-to-speech (TTS)
systems. A simple way of enhancing spectral clarity is in-
creasing the order of spectral parameters in the speech analy-
sis/synthesis stage, but the method has an inherent statistical
modeling problem. The proposed algorithm takes a low-to-
high-order spectral parameter mapping approach that adopts
low-order parameters for HMM training but does high-order
parameters for the actual synthesis step. Various ways of
mapping criterion to find appropriate high-order parameters
are investigated to further enhance the quality of synthesized
speech. Performance evaluation results verify the superiority
of the proposed method compared to the conventional one.

Index Terms— HMM-based TTS, spectral clarity, statis-
tical modeling, low-to-high-order spectral parameter mapping

1. INTRODUCTION

The HMM-based TTS system has been popularly studied be-
cause of its reasonable quality and easy implementation [1, 2].
It is well known that the naturalness of synthesized speech
is improved by adopting efficient excitation and spectrum
models. As an advanced excitation model, a mixed excita-
tion and waveform interpolation (WI) models are applied to
HMM-based TTS systems [3, 4]. For a spectrum model, line
spectral frequency (LSF) [5] is popularly used because it is
easy to check the stability condition. Note that the clarity of
synthesized speech can be enhanced by using a high-order
spectral parameter. However, the use of high-order spectral
parameters brings a stability problem in the HMM training
and parameter generation stage. As the order of LSF is in-
creased, the gaps between consecutive coefficients become
small. Therefore, it is not easy to increase modeling accuracy
while keeping the constraint of stability condition. In other
words, the stability of spectral parameters and the clarity of
synthesized speech have a trade-off relationship.
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In order to resolve the stability problem of generated
LSFs, a model training criterion of having minimum gen-
eration error (MGE) is introduced into the training process
[6]. In [7], a parameter generation algorithm is also proposed
which utilizes the fact that the stability problem of LSF needs
to be solved in the generated LSF domain rather than in the
model training procedure. Although these methods reduce the
stability problem somehow, the generated LSFs are not clear
and detail enough because they are artificially synthesized
from trained HMMs.

This paper proposes a low-to-high-order spectral parame-
ter mapping method to represent the details of spectrum. The
proposed method substitutes a low-order spectral parameter
generated from trained HMMs with a high-order spectral pa-
rameter extracted from original speech signals during the syn-
thesis stage. Since the proposed method trains HMMs using
a low-order spectral parameter but synthesizes the signal us-
ing a high-order spectral parameter, the spectral clarity is en-
hanced while avoiding the stability problem.

A well-designed mapping criterion from the low-order pa-
rameters to the high-order ones is very important to obtain an
appropriate spectrum sequence, therefore the proposed map-
ping criterion considers both static and dynamic characteris-
tics of spectral parameters. The criterion consists of two types
of distances; distances between a low-order spectral parame-
ter generated from trained HMMs and low-order spectral pa-
rameter candidates in the pre-stored repository, and between
high-order spectral parameters obtained in previous frames
and high-order candidates in the repository. Since the low-
order spectral parameter is coupled with the high-order one
extracted at the same frame of the input speech signal, the
optimal high-order spectral parameter is simply obtained by
taking a table look-up process.

The results of the performance evaluation prove the supe-
riority of the proposed method in terms of both subjective and
objective measures.

2. STABILITY PROBLEM IN
HIGH-ORDER SPECTRAL PARAMETER TRAINING

Although the synthesized speech by adopting high-order
spectral parameters improves intelligibility, there remains a
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Fig. 1. Unstable frame rate of extracted and generated mel-
LSFs on fifty test sentences.

statistical modeling issue if the order of spectral parameters
increases or the amount of database for training is insuf-
ficient. Fig. 1 shows the unstable frame rate of spectral
parameters extracted directly from original speech waveform
and generated from the trained HMMs. A frame is classified
as an unstable frame if the consecutive coefficients of LSF
are reversed or extremely close [8]. The unstable frame rate
of generated spectral parameters increases as the order of
parameter increases, while there is no significant difference
in the spectral parameters directly extracted from original
speech waveform. The core idea of the proposed method is
to use high-order spectral parameters extracted from origi-
nal speech for synthesis but to use low-order ones for HMM
training. It needs a spectral parameter mapping process that
is explained in the following section.

3. PROPOSED HMM-BASED TTS SYSTEM

3.1. Overview of the proposed system

Fig. 2 depicts a block diagram of the proposed method. The
main strategy of the proposed method depicted in the box is
to substitute the low-order spectral parameters generated from
the trained HMMs with the high-order spectral parameters ob-
tained from the original speech waveform. In the mapping
process step, it is very important to determine a criterion of
choosing the most appropriate parameter. The detailed sys-
tem flow is explained as follows.

The training procedure consists of two independent parts.
One is the context-dependent HMMs training with acoustic
parameters such as f0 and LSF. This part is identical to the
conventional training process [2]. The other is to create a
repository that consists of pairs of low and high-order spectral
parameters needed for the mapping process in the synthesis
stage. The pair of low and high-order LSFs is extracted from
the original speech waveform at the same frame data, and the
LSFs are linked together to have identical indices.
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Fig. 2. A block diagram of the proposed HMM-based TTS
system.

The synthesis procedure is similar to the conventional ap-
proach except for using high-order spectral parameters ob-
tained by the mapping process. At first, the low-order LSF
is generated by the trained HMMs using a parameter gen-
eration algorithm [9]. Then, the optimal high-order LSF is
chosen from the LSF repository by performing a low-to-high-
order spectral parameter mapping process. As a final step, a
post-processing filter is applied to the sequence of obtained
optimal high-order LSFs in order to smooth LSF trajectory.

To minimize the complexity of the mapping process, a
concept of partial search is also adopted, which defines mul-
tiple number of centroid vectors to restrict the search space.
The centroid vectors of the low-order LSF repository are ob-
tained in the training procedure by applying the LBG algo-
rithm [10]. Then, the high-order LSFs corresponding to each
search space of low-order LSF repository are deposited to
have same indices.

3.2. Proposed low-to-high-order spectral parameter map-
ping algorithm

Fig. 3 shows the detailed procedure of the proposed low-to-
high-order spectral parameter mapping process. The optimal
high-order LSF is determined by the proposed mapping cri-
terion using the low-order LSF generated from the trained
HMMs and the optimal high-order LSFs determined at pre-
vious frames. The mapping criterion is defined as follows :

ŵoh(n) = argmin
wc

{
ε (wc; wgl(n), ŵoh(n− 1), . . . , ŵoh(n− L))} ,

(1)
where ŵoh(n) = [woh,1(n), . . . , woh,N (n)]

> is the opti-
mal high-order LSF at the current time n, and wgl(n) =
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Fig. 3. A block diagram of the proposed mapping process.

[ωgl,1 (n), . . . , ωgl,M (n)]
> is the low-order LSF generated

by the trained HMMs. M and N denote the order of the low
and high-order LSFs, respectively. wc =

[
wcl

>,wch
>]> is

a pair of low and high-order LSF candidates. Given the gen-
erated low-order LSF wgl(n) and L optimal high-order LSFs
obtained at the previous frames ŵoh(n− τ)|τ=1,2,...,L, the
optimal high-order LSF ŵoh(n) is determined by minimizing
the cost function ε (·) with respect to wc. The cost function
ε (·) is defined as the sum of two distances as follows :

ε (wc;wgl(n), ŵoh(n− 1), . . . , ŵoh(n− L))

= D (wgl(n),wcl) +D

(
L∑
τ=1

ατ ŵoh(n− τ),wch

)
.

(2)
The second term is included to represent the impact of the

dynamic characteristic of spectral parameters. Note that the
synthesized speech quality is deteriorated by inappropriate
spectral movements if only the independent frame-by-frame-
based mapping process is applied. In order to generate the
natural trajectory of LSFs, the second term provides the sim-
ilarity between the high-order LSF candidates wch and a
weighted sum of the optimal high-order LSFs obtained at the
previous frames ŵoh(n − τ). The dynamic characteristic of
high-order LSF is also involved because the actual synthesis
stage uses high-order LSFs.

The frame weight ατ in Eq. (2) is determined by con-
sidering the statistical characteristic of speech signal. Since
the spectral characteristic does not vary rapidly, we assume
that the trajectory of LSF coefficients can be modeled by a
weighted linear combination. The optimal weight is obtained
by solving the Wiener-Hopf equations using large amounts of
data [11].

During the mapping process, it is inefficient to use large
amounts of repository because its computational complexity

is huge. To reduce the complexity, a partial search region is
pre-selected in the searching process. The search region is
selected to minimize the weighted distance between the gen-
erated low-order LSF and low-order partial centroid vectors.

ĉl = argmin
cl

D(ωgl(n), cl), ∀cl ∈ Sl, (3)

where cl = [cl,1, . . . , cl,M ]
> is the low-order partial centroid

vector that indicates a partial search space. Sl denotes the
entire search space consisting of cl.

The distance between two LSF vectors is measured by fol-
lowing equation :

D(ωx,ωy) =

√√√√ 1

P

P∑
i=1

vi
V
(ωx,i − ωy,i)2, (4)

where vi denotes a weighting factor for the i-th coefficient of

the P -order LSF and V =
P∑
j=1

vj is a normalization factor. It

is an intrinsic characteristic of LSF parameters that neighbor-
ing coefficients are related to local spectral peak. Hence, the
higher weight is given to the LSF coefficient which is close
to its adjacent one. The weight is determined by the inverse
harmonic mean (IHM) weighting function [12].

4. PERFORMANCE EVALUATION

To evaluate the performance of the proposed approach, a Ko-
rean TTS system is constructed based on the HTS toolkit [2].
For training, around three thousand speech waveforms are
recorded by a male speaker with a sampling rate of 16kHz.
The excitation is modeled by a pulse-or-noise (PoN) model.
The fundamental frequency, f0, and 16-order mel-LSFs are
used as acoustic parameters. The frame length is set to 25ms
and the frame shift is set to 5ms. To reduce the complexity
of the low-to-high-order spectral parameter mapping process,
each phoneme-dependent LSF repository has 512 partial cen-
troid vectors. The repository consists of around thirty thou-
sand pairs of 16 and 36-order mel-LSFs.

An experiment is carried out to evaluate the feasibility
of the proposed mapping criterion. Since the appropriate se-
quence of speech spectrum should be varied smoothly in time,
we measure the spectral distance (SD) between consecutive
frames. The SD between the n-th and (n+1)-th frames, Dn,
is defined (in decibels) as follows

D2
n =

1

fs

∫ fs

0

[10log10 (Pn+1(f))− 10log10 (Pn(f))]
2
df,

(5)
where fs is sampling frequency in Hz. Pn(f) is the LPC
power spectra of the n-th frame. The SD is also measured
using fifty test sentences. The w/o dynamic characteristics
is the one obtained by the first term of the mapping criterion
given in Eq. (2), and the w/ dynamic characteristics is the one
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Table 1. Average SD of 36-order mel-LSFs sequences
Feature types Avg. SD (dB)
Natural speech 2.10

w/o dynamic characteristics 4.54
w/ dynamic characteristics 3.95

Table 2. Unstable frame rates of 36-order mel-LSFs
Feature types Unstable frame rate (%)

Conventional method 13.34
Proposed method 0.02

Fig. 4. A/B/X preference test result

obtained by the full mapping criterion. Table 1 shows that
although the average SD of the w/ dynamic characteristics is
not better than that of the natural speech, it is much better
than that of w/o dynamic characteristics.

To evaluate the performance of the trainability, the un-
stable frame rate is calculated with fifty test sentences. The
conventional method with 36-order mel-LSF is used for com-
parison. As shown in Table 2, the unstable frame rate of the
proposed method is very low because the high-order mel-LSF
is obtained from the LSF repository of which the data is ex-
tracted from original speech waveform.

An A/B/X preference test is also conducted to evaluate
subjective quality. Fifteen randomized utterances not in-
cluded in the training set are used for the test set. Ten experts
in the speech signal processing field are participated in the
test. As shown in Fig. 4, it is clear that the quality of synthe-
sized speech by the proposed method is superior to that of the
conventional one that uses 36-order mel-LSF in both training
and synthesis procedures.

5. CONCLUSIONS

The synthesized speech quality of HMM-based TTS systems
has been improved by enhancing spectral clarity. The pro-
posed algorithm adopted a low-to-high-order spectral param-
eter mapping strategy that substitutes low-order spectral pa-
rameters generated from trained HMMs with high-order ones
extracted from original speech. Experiment results verified
the superiority of the proposed method compared to the con-
ventional method.
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