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ABSTRACT
This paper studies the performance of glottal flow signal based exci-
tation methods in statistical parametric speech synthesis. The current
state of the art in excitation modeling is reviewed and three excitation
methods are selected for experiments. Two of the methods are based
on the principal component analysis (PCA) decomposition of esti-
mated glottal flow pulses. While the first one uses only the mean of
the pulses, the second method uses 12 principal components in addi-
tion to the mean signal for modeling the glottal flow waveform. The
third method utilizes a glottal flow pulse library from which pulses
are selected according to target and concatenation costs. Subjective
listening tests are carried out to determine the quality and similar-
ity of the synthetic speech of one male and one female speaker. The
results show that the PCA-based methods are rated best both in qual-
ity and similarity, but adding more components does not yield any
improvements.

Index Terms— Statistical parametric speech synthesis, excita-
tion, glottal flow, principal component analysis, pulse library

1. INTRODUCTION

Statistical parametric speech synthesis, also known as HMM-based
synthesis [1], is a flexible framework for creating synthetic speech.
Despite its several attractive features, hidden Markov model (HMM)
based synthesis is known to suffer from poor voice quality in com-
parison to the best unit selection systems. Recent advances in sta-
tistical modeling and vocoding techniques, however, have indicated
that adequate quality can also be achieved in HMM-based synthesis
[1]. One of the key factors for this progress has been the advances in
the excitation modeling methods for the HMM-vocoders.

There are several different approaches for modeling the exci-
tation of a speech signal. The earliest vocoders used only a peri-
odic train of impulses [2] located at glottal closure instants to model
the source of voiced speech. The quality of impulse-train-excited
speech is poor with a buzzy sound due to unnaturally strong higher
harmonics. In addition, excitation features other than the fundamen-
tal frequency (F0) and energy cannot be modeled. Many excitation
generation methods have been proposed as alternatives to the use
of simple impulse trains. Combining the periodic, voiced excitation
with additive noise has been used in several more advanced methods,
such as in mixed excitation [3] and two-band excitation [4] tech-
niques. In mixed excitation, noise is added to different frequency
bands according to weights that define the relative amplitudes of pe-
riodic excitation versus aperiodic noise excitation. Mixed excitation
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is used for example in STRAIGHT [5, 6], which is one of the most
widely used vocoders in statistical parametric speech synthesis. In
two-band excitation, a maximum voiced frequency is defined above
which voiced excitation is composed only of an aperiodic compo-
nent. Both mixed and two-band excitation have been shown to im-
prove the synthesis quality compared to systems using the traditional
impulse train excitation. In another approach, closed-loop training
[7, 8], voiced periodic impulse excitation and unvoiced aperiodic
noise excitation are fed through state-dependent filters, thus maxi-
mizing the likelihood of the excitation signal in comparison to the
original one. The synthesis quality is greatly improved compared
to a conventional impulse train excitation [7] and was comparable
to the quality of a STRAIGHT based method [9]. Also paramet-
ric models of the glottal flow have been used in speech synthesis
[10, 11] hence allowing some ability for modification of the voice
source characteristics. Results obtained indicate that the problem of
buzziness can be partly avoided.

The real excitation of voiced speech, the glottal flow, is difficult
to represent as a compressed parametric vector. Therefore, vocoding
techniques have been proposed that utilize the excitation waveform
per se rather than its pre-defined compressed representation, hence
capturing the detailed characteristics of the signal. The excitation
signal to be modeled can be either the glottal flow or the residual
computed by linear predictive coding (LPC). The idea of using the
natural excitation for improving the synthesis quality is not new (see
e.g. [12, 13]), but the development of statistical parametric speech
synthesis has given rise to novel excitation methods. In [14, 15], a
glottal flow pulse estimated from natural speech with glottal inverse
filtering is used for constructing the voiced excitation. The pulse
is first interpolating according to F0, aperiodic noise component is
added to five separate frequency bands in the frequency domain, and
finally the modified pulses are concatenated in order to create a con-
tinuous excitation. The synthesis quality was shown in [15] to out-
perform STRAIGHT with a low-pitched male voice, and to be equal
to or better than STRAIGHT in another experiment [16] with one
male and one female voice. In [17, 18, 19], principal component
analysis (PCA) is applied to pitch-synchronous residual signal in or-
der to model the waveform with eigen-residuals. The method in [17]
was shown to outperform a simple excitation, the method in [18] was
rated better than a simple excitation and two-band excitation [4], and
[19] was rated comparable to the quality of STRAIGHT. In [20],
a pitch-synchronous residual codebook is constructed and residual
frames are selected for synthesizing the excitation. The resulting
quality was shown to outperform a simple impulse train excitation
approach. In [21], a library of various estimated glottal flow pulses
is constructed and selected for the synthesis of the excitation ac-
cording to a target cost of voice source features and a concatenation
cost between adjacent pulses. In [21], the pulse library method was
shown to be equal in quality to the method in [15] but with slightly
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better speaker similarity. In [22, 23], a pulse library technique was
shown to perform comparably to STRAIGHT-based techniques.

The goal of this study is to compare the most potential recently
proposed excitation generation techniques in statistical speech syn-
thesis. The comparison involves methods that have been used either
for the residual or the glottal flow. The common factor is the use of
the natural excitation signal per se. All the methods involved have
shown potential in producing high-quality synthetic speech but they
have not been compared simultaneously until now.

2. VOCODERS IN COMPARISON

When comparing statistical parametric speech synthesis techniques,
there is always the problem of how to make the comparison fair.
The synthesis systems should be different only in terms of the tech-
nique to be tested. This is rarely possible and usually techniques
are compared using more or less different system architectures. This
may lead to various types of differences in the synthesized speech;
prosodic differences are mixed with differences in segmental speech
quality, and thus the rating becomes ambiguous. In this study, only a
single configuration of a statistical speech synthesis system is trained
per speaker in order to avoid the aforementioned problems. All pa-
rameters required to synthesize speech with the techniques to be
tested are included in a single system.

Three different excitation techniques are experimented with.
Two of the methods, related to [17, 18, 19], are based on the PCA
decomposition of estimated glottal flow pulses. While the first one
uses only the mean of the pulses, the second method uses 12 com-
ponents in addition to the mean signal for modeling the glottal flow
waveform. The third method [21] utilizes a library of various glottal
flow pulses, which are selected from the library according to target
and concatenation costs. The STRAIGHT vocoder is not involved
in the present comparison for several reasons. First, it is not possible
to integrate STRAIGHT into the other systems due to many differ-
ences in speech parametrization and synthesis techniques. Secondly,
if STRAIGHT were used as a reference, the differences in prosody
would certainly affect the results and thus the assessment would not
measure purely the differences between the excitation generation
techniques. Thirdly, the quality of STRAIGHT compared to the
reference methods is already documented [15, 19]. The implemen-
tation of the single pulse GlottHMM method [15] is not included in
the test since it is very similar to the first technique. All the three
methods are described in more detail in Section 2.4.

Since two of the methods to be tested (similar to [19]) originally
utilized the LPC residual as an excitation while the glottal flow is
used in [21], it is not possible to integrate these methods as such into
an individual system. Thus, all waveform modeling is performed
in the glottal flow waveform domain, as is done in the GlottHMM
vocoder [15, 21], which is used throughout this study. The impli-
cation of this choice is that the excitation signal to be modeled ex-
hibits more spectral variation compared to whitened LPC residual.
This also produces more natural variation to the excitation wave-
form that is to be modeled. Also the scheme of adding aperiodic
noise is adopted from the GlottHMM vocoder. In the next section,
GlottHMM is described in order to understand the methods used in
this study and to depict the similarities and differences to the vocoder
implementations used in other studies.

2.1. Speech Parametrization with GlottHMM

The parametrization of speech with the GlottHMM vocoder, used
for all the methods, is illustrated in Figure 1. Speech signal is first
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Fig. 1. Illustration of the parametrization of speech with the
GlottHMM vocoder.

high-pass filtered with a cut-off frequency of 70 Hz in order to re-
move possible low frequency fluctuations. Signal is then analyzed
in two types of windows. A 25-ms long frame is used to extract en-
ergy and spectra of the vocal tract and the voice source. A longer
frame, whose length depends on the F0 range of the speaker, is used
to extract voice source features that require several full pitch peri-
ods for successful analysis. Both frames are processed with iterative
adaptive inverse filtering (IAIF) [24, 25], a glottal inverse filtering
method that separates the speech signal into the estimated glottal
flow signal and the vocal tract filter. LPC is used inside IAIF for es-
timation of the spectrum. The modified version of the IAIF method
[22] is used in order to make the glottal flow signal estimation more
robust. The use of IAIF in statistical parametric speech synthesis
is described in detail in [15]. The estimated vocal tract and voice
source spectra are both parametrized with line spectral frequencies
(LSFs), parametric representation of LPC information well-suited
for statistical parametric speech synthesis [26], providing stability
and low spectral distortion. The longer frame, representing the voice
source signal after IAIF, is used to extract the F0 of speech using
the autocorrelation method. The relative amplitudes of the periodic
vibratory glottal excitation and the aperiodic noise component of the
excitation is represented by the harmonic-to-noise ratio (HNR), indi-
cating the degree of voicing. HNR is based on the ratio between the
upper and lower smoothed spectral envelopes (defined by the har-
monic peaks and interharmonic valleys, respectively) and averaged
across five frequency bands according to the equivalent rectangular
bandwidth (ERB) scale.

The extraction of individual glottal flow pulses from the esti-
mated glottal flow signal is of special interest in this study. First, the
glottal closure instants (GCIs) are detected by a simple peak pick-
ing algorithm that searches for the negative excitation peaks of the
glottal flow derivative approximately at fundamental period inter-
vals (T0). Although more sophisticated GCI detection methods have
been developed (for a review, see e.g. [27]), the use of the simple
method does not incur problems in this application since only pulses
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Fig. 2. Illustration of the vocoder and different excitation generation techniques.

that match with T0 are accepted and thus the errors due to GCI detec-
tion are minimized. For all the accepted two-pitch period speech seg-
ments, the modified IAIF algorithm is applied pitch-synchronously
again in order to yield a better estimate of the glottal flow. The re-
estimated two-period glottal flow derivative waveforms are finally
windowed with the Hann window and linked with the corresponding
voice source parameters extracted by the vocoder.

2.2. PCA Decomposition of the Pulse Library

Principal component analysis (PCA) is a mathematical procedure
that uses an orthogonal transformation to convert a set of observa-
tions into a set of linearly uncorrelated variables called principal
components (PCs). The use of PCA for voice source waveform
modeling was first proposed in [28] and a speech analysis/synthesis
scheme was elaborated in [29, 30]. It has also been used successfully
in statistical parametric speech synthesis [17, 19].

In this work, the extracted two-period glottal flow derivative
waveforms of the pulse library are first interpolated to a constant
length (25 ms) and normalized in energy. The pulses are then nor-
malized by evaluating and subtracting the mean glottal flow pulse,
after which PCA of order 12 is applied. The results of the analy-
sis thus consists of the mean glottal flow signal, the 12 PCs, and
the 12 PC weights for the library pulses. The PCA decomposition
of the pulse library is performed separately from the analysis of the
whole speech corpus. Thus, the size of the pulse library can be kept
relatively small with the assumption that the pulse library is a repre-
sentative set from the corpus.

After applying PCA to the pulse library, the actual speech anal-
ysis and PCA decomposition takes place, where the extracted pulses
from each frame are converted to corresponding PC weights. This

Table 1. Trained (T) and static (S) speech features.

Type Feature No. of parameters

T Vocal tract spectrum 24/30 (female/male)
T Energy 1
T Fundamental frequency 1
T Harmonic-to-noise ratio 5
T Voice source spectrum 5/10 (female/male)
T Principal component weights 12

S Mean pulse 1 vector
S Principal components 12 vectors
S Pulse library ∼7500 pulses + params

process consists of the same normalization scheme as in the case of
the pulse library, i.e., length, energy, and mean normalization, after
which PC weights are calculated according to the PC vectors.

2.3. Training of the Synthesizer

The resulting speech features, including the 12 PC weights, are
trained within the HTS speech synthesis framework [31, 32]. Both
F0 and PC weights are trained within multi-space distribution
(MSD) streams [33], while other speech features are trained in
continuous streams. All speech features extracted for the current
study are depicted in Table 1.

2.4. Speech Synthesis with the Excitation Techniques

There are three excitation generation techniques that are experi-
mented in this study:

1. PCA-0: Mean pulse + spectral matching
2. PCA-12: Mean pulse + 12 PCs + spectral matching
3. Pulselib: Pulse library

The techniques are illustrated in Figure 2. PCA-0 is related to the
method in [19], using only the mean of the pulse library (actually
first eigen-residual is used in [19] which is, in principle, slightly
different). However, there are two important differences. First, the
variation of the excitation is largely captured by the LPC spectrum
in [19], thus making the spectral envelope of the LPC residual rather
constant. In this study, glottal flow signal is used instead of LPC
residual, which gives the excitation more room for natural variation.
Thus, to allow the single mean glottal flow pulse to vary, a spectral
matching scheme [15] is used, i.e., the excitation signal is filtered
with an infinite impulse response (IIR) filter that flattens the pulse
and applies the modeled voice source spectrum.

PCA-12 is otherwise identical to the PCA-0 technique but the
glottal flow pulse is allowed for more variation by adding the 12
principal components according to the modeled PC weights. Spec-
tral matching is still applied in order to normalize the overall spectral
tilt, as is done in PCA-0.

In Pulselib [21], pulses are selected from the library according
to manually tuned target cost consisting of the voice source features
(F0, energy, voice source spectrum, HNR, and PC weights) and the
concatenation cost consisting of the root mean square (RMS) error
between adjacent downsampled pulse candidates. The selection pro-
cess is optimized with the Viterbi search. Spectral matching is not
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required since it is assumed that the selection process will automati-
cally select pulses with the desired spectral tilt.

In all techniques, the degree of voicing is controlled identically.
The amount of noise in the voiced excitation is matched by manipu-
lating the phase and magnitude of the spectrum of each pulse accord-
ing to HNR at each ERB band. Finally, the pulses are overlap-added
to create a continuous excitation signal, which is filtered with the
formant enhanced (post-filtering) vocal tract filter to create speech.

3. EXPERIMENTS

In order to compare the methods, both quality and similarity of the
speech samples generated by the techniques were assessed in subjec-
tive listening tests. Tests were performed both with male and female
speakers. The male database (mv) consists of 600 phonetically rich
utterances spoken by a low-pitched Finnish male [34]. The female
database (heini) consists of 513 phonetically rich utterances spoken
by a young Finnish female.

First 20 sentences of the databases were used to build the pulse
library for each speaker. The pulse libraries consisted of 7528 and
7500 pulses for the male and female speaker, respectively. PCA was
applied to the pulse libraries in order to get the mean pulses, PCs and
PC weights.

The synthesis times between the PCA-0 and PCA-12 methods
were similar, but the synthesis time for the Pulselib method was al-
most double with the male speaker and over ten times longer with
the female compared to PCA-based methods. The significant differ-
ence between the male and female speaker with Pulselib is due to
the F0 of the speaker; the voiced sections in female speech consists
of a large number of pulses, and thus the computational cost of the
pulse selection algorithm increases exponentially.

For measuring the quality of speech, a comparison category rat-
ing (CCR) test was used. In CCR test, subjects are presented with
a speech sample pairs and the task of the listener is to rate the qual-
ity difference between the samples on the comparison mean opinion
score (CMOS) scale, which is a discrete seven-point scale ranging
from much worse (−3) to much better (3). Ten sentences per speaker
were synthesized with each method for the test and a total of 60 com-
parisons were performed per speaker per test subject. The responses
of the CCR test were summarized by calculating the mean score for
each method with 95% confidence intervals, which yields the order
of preference and distances between the methods.

For measuring the similarity, a forced choice test is used in
which the listener is presented with four reference samples of nat-
ural speech and one synthetic sample per each method. The task
of the listener is to choose the method that is most similar to the
speaker in the reference samples. Ten sentences were synthesized
per speaker with each method and used in the similarity test. The
responses are summarized by evaluating the percentage of choices
for each method with 95% confidence intervals.

All tests were performed in quiet listening booths with high-
quality headphones. A total of ten listeners participated in the test,
thus yielding a total of 600 and 100 data points per speaker for the
quality and similarity test, respectively.

The results of the quality test are shown in Figure 3. The re-
sults indicate that the glottal flow mean based excitation techniques
PCA-0 and PCA-12 show no statistically significant differences nei-
ther for male nor female speaker. The pulse library method is rated
worse than the other two methods. The results of the similarity test
are shown in Figure 4. Methods PCA-0 and PCA-12 show no sta-
tistically significant difference in similarity, while the pulse library
method is rated slightly less similar.
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Fig. 3. Quality results for the male (left) and female (right) voices.
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4. DISCUSSION AND CONCLUSIONS

Firstly, this study shows that PCA-based excitation technique can be
successfully used for the estimated glottal flow signal, while previ-
ously PCA has been only used for the LPC residual signal [17, 18,
19, 20, 28, 29, 30]. Secondly, the study shows that using the PCs in
addition to the mean pulse does not increase the quality of synthetic
speech, corroborating the results obtained in [19]. Although the use
of PCs occasionally makes speech more vivid, especially in the ex-
treme modes of glottal flow, such as in very breathy or tense voice,
the differences were small and infrequent, thus making the consis-
tent assessment between the two methods difficult for the listeners.
Thirdly, the results show that the pulse library method is currently
not robust enough to yield quality comparable to the PCA-based ex-
citation techniques. Although some segments sound very close to
original speech, occasional artefacts, reported as “reverberant” or
“chorus” type effects in voiced speech, deteriorate the overall qual-
ity. This indicates that the smoothness (or regularity) of the resulting
speech is of primary importance for the listeners. Thus, attempts on
realistic modeling of the contextual variation in excitation are most
likely to fail if this prerequisite is compromised. In addition, the
complex unit-selection type optimization of the pulse library tech-
nique makes the voice building more difficult and unpredictable. For
example, the male voice created with the pulse library method was
assessed in [21] to be equal to or better than the original GlottHMM
[15] technique with apparently more successful tuning of the target
and concatenation weights. Nevertheless, the differences between
all the systems are rather small due to the identical base system. It
is also worthwhile to note that the PCA-0 technique is very similar
to the original GlottHMM implementation [14, 15], in which a sin-
gle estimated glottal flow pulse is modified to create excitation. The
new mean-based excitation scheme eliminates the need for the man-
ual selection of the glottal flow pulse and ensures that the pulse does
not have a significant existing noise component.
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