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ABSTRACT

This paper presents a new spectral modeling method for statistical
parametric speech synthesis. In contrast to the conventional meth-
ods in which high-level spectral parameters, such as mel-cepstra or
line spectral pairs, are adopted as the features for hidden Markov
model (HMM) based parametric speech synthesis, our new method
directly models the distribution of the lower-level, un-transformed
or raw spectral envelopes. Instead of using single Gaussian distribu-
tions, we adopt restricted Boltzmann machines (RBM) to represent
the distribution of the spectral envelopes at each HMM state. We
anticipate these will give superior performance in modeling the join-
t distribution of high-dimensional stochastic vectors. The spectral
parameters are derived from the spectral envelope corresponding to
the estimated mode of each context-dependent RBM and act as the
Gaussian mean vector in the parameter generation procedure at syn-
thesis time. Our experimental results show that the RBM is able to
model the distribution of the spectral envelopes with better accura-
cy and generalization ability than the Gaussian mixture model. As
a result, our proposed method can significantly improve the natural-
ness of the conventional HMM-based speech synthesis system using
mel-cepstra.

Index Terms— Speech synthesis, hidden Markov model, re-
stricted Boltzmann machine, spectral envelope

1. INTRODUCTION

The hidden Markov model (HMM)-based parametric speech synthe-
sis method has become a mainstream speech synthesis method in
recent years [1, 2]. In this method, the spectrum, F0 and segment
durations are modeled simultaneously within a unified HMM frame-
work [1]. STRAIGHT [3] as a high-performance speech vocoder is
widely used in current HMM-based speech synthesis systems [4, 5].
It extracts a smooth spectral envelope without periodicity interfer-
ence at each frame. Then, mel-cepstra [4] or line spectral pairs
[5] can be derived from the spectral envelopes of training data for
the subsequent HMM modeling. The probability density function-
s (PDF) of each HMM state is commonly represented by a single
Gaussian distribution [1]. At synthesis time, the spectral parame-
ters are predicted so as to maximize their output probabilities from
the HMM of the input sentence [2]. Then the spectral envelopes
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are recovered from the generated spectral parameters and are used
for waveform reconstruction using STRAIGHT. Because the single
Gaussian distributions are used as the state PDFs, the parameter gen-
eration outputs tend to distribute near the modes (also the means) of
the Gaussians, which are estimated by averaging observations with
similar context descriptions in the training set. Although this aver-
aging process improves the robustness of parameter generation, the
detailed characteristics of the spectral parameters are lost. The re-
constructed spectral envelopes are over-smoothed, which leads to a
muffled voice quality in the synthetic speech.

In this paper, we aim to improve the conventional spectral mod-
eling method in HMM-based speech synthesis in two aspects. First,
the distributions of the spectral envelopes are modeled directly to
avoid the influence of spectral parameter extraction on the process of
spectral modeling. Second, a restricted Boltzmann machine (RBM),
rather than the single Gaussian distribution, is adopted as the form
of the state PDFs in order to better describe the distribution of high-
dimensional spectral envelopes and alleviate the over-smoothing
problem at synthesis time.

This paper is organized as follows. In Section 2, we will describe
the details of our proposed method, including a brief review of the
RBM. Section 3 reports our experimental results and Section 4 gives
the conclusions.

2. METHODS

2.1. Restricted Boltzmann machines

An RBM is a kind of bipartite undirected graphical model (i.e.
Markov random field) which is used to describe the dependency
among a set of random variables using a two-layer architecture [6].
In this model, the visible stochastic units v = [v1, ..., vV ]> are
connected to the hidden stochastic units h = [h1, ..., hH ]>, where
V and H are the unit numbers of the visible and hidden layers. In
this paper, we apply RBMs to model the distribution of spectral en-
velopes, and the visible units correspond to the spectral amplitudes
at all frequency points. The Gaussian-Bernoulli RBM, in which
v ∈ RV are real-valued and h ∈ {0, 1}H are binary, is suitable for
this task, and so is adopted here. The energy function of the state
{v, h}is defined as

E(v, h) =
V∑

i=1

(vi − ai)2

2
−

H∑
j=1

bjhj −
V∑

i=1

H∑
j=1

wijvihj , (1)
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Fig. 1. Flowchart of our proposed method. The modules in solid
lines represent the procedures of context-dependent model training
in the conventional HMM-based speech synthesis. The modules in
dash lines describe the add-on procedures of our proposed method.

where a = [a1, ..., aV ]>, b = [b1, ..., bH ]>, and W = {wij}V×H

are model parameters. The joint distribution over the visible and
hidden units is defined as

P (v, h) =
1

Z exp (−E(v, h)) , (2)

where

Z =

∫
v

∑
h

exp (−E(v, h)) dv (3)

is the partition function which can be estimated using the annealed
importance sampling (AIS) method [7]. Therefore, the probability
density function over the visible vector v can be calculated as

P (v) =
1

Z
∑
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, (4)

where wj denotes the j-th column of matrix w. Given a training set,
the RBM model parameters {w, a, b} can be estimated by maximum
likelihood learning using the contrastive divergence (CD) algorithm
[8, 9].

2.2. RBM for modeling and generating spectral envelopes

In recent years, RBMs have been applied to modeling speech signal-
s, such as speech recognition [10, 11, 12], spectrogram coding [13],
and acoustic-articulatory inversion mapping [14] where it mainly
acts as a pre-training method for a deep autoencoder or a deep neu-
ral network. In this paper, we treat the RBM as a density model

and investigate its ability in modeling and generating the spectral
envelopes for HMM-based speech synthesis. The flowchart of our
proposed method is shown in Fig.1.

In order to make minimum modification to the original model
training and parameter generation procedures, the RBM-based spec-
tral envelope modeling method is implemented as a post-processing
step performed on the trained context-dependent Gaussian HMM-
s using the conventional spectral parameters such as mel-cepstra
or line spectral pairs. During the acoustic feature extraction us-
ing the STRAIGHT vocoder, the original spectral envelopes are s-
tored besides the spectral parameters. After training the context-
dependent HMMs, a state alignment to the acoustic features is per-
formed. The state boundaries are used to gather the spectral en-
velopes for each context-dependent state and an RBM is estimat-
ed under the maximum likelihood criterion for each state. Finally,
the context-dependent RBM-HMMs can be constructed for model-
ing the spectral envelopes.

At synthesis time, the optimal sequence of spectral envelopes is
estimated to maximize the output probability from the RBM-HMMs
of the input sentence. Because the dynamic features of the spec-
tral envelopes are not considered yet in this paper, the trained RBMs
cannot generate the continuous sequence of spectral envelopes di-
rectly. Therefore, an approximate approach is applied by deriving
the spectral parameters from the estimated mode of each RBM and
using these parameters to replace the Gaussian mean vector of the
static spectral parameters in the trained context-dependent HMMs.
One benefit of this approximation is that it keeps the synthesis part
of the conventional system intact.

2.3. Estimating RBM mode

Given the model parameters {w, a, b} of an RBM which are estimat-
ed using the CD algorithm [8] on the training set, the mode of the
RBM is defined by

v∗ = argmax
v

logP (v), (5)

where

logP (v) =− 1

2
(v− a)>(v− a)

+

H∑
j=1

log
(
1 + exp(bj + v>wj)

)
− logZ (6)

according to (4). In contrast to the single Gaussian distribution, this
mode is not the average of training vectors any more. The gradient
descent algorithm is adopted to solve (5), i.e.,

v(i+1) = v(i) + α · ∂logP (v)
∂v

∣∣∣∣
v=v(i)

, (7)

where i denotes the number of iteration, α is the step size and

∂logP (v)
∂v

= −(v− a) +
H∑

j=1

exp(bj + v>wj)

1 + exp(bj + v>wj)
wj . (8)

Because the RBM is multimodal, the gradient descent optimization
in (7) only leads to a local maximum and the result is sensitive to the
initialization of v(0). In order to find a representative v(0), we firstly
calculate the means of the conditional distributions P (h|v) for all
training vectors v. These means are averaged and made binary using
a fixed threshold of 0.5 to get h(0). Then, the initial v(0) for the
iterative updating in (7) is set as the mean of P (v|h(0)).
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Table 1. The average log-probabilities on the training and test sets
when modeling (a) the mel-cepstra and (b) the spectral envelopes of
a specific state using different models. The numbers in the brack-
ets indicate the Gaussian mixtures numbers for the GMMs and the
hidden unit numbers for the RBMs. “diag” and “full” denote using
diagonal and full covariance matrices respectively.
(a)

ave. log-prob. number of
train test parameters

GMM(1)-diag -58.176 -56.380 82
GMM(4)-diag -51.188 -53.097 328
GMM(16)-diag -40.869 -59.492 1,312
GMM(32)-diag -29.973 -72.056 2,624
GMM(1)-full -30.883 -54.648 902
RBM(1) -56.464 -55.244 83
RBM(10) -52.416 -52.660 461
RBM(50) -51.840 -53.636 2,141
RBM(200) -53.554 -55.020 8,441
RBM(1000) -55.797 -56.940 42,041

(b)
ave. log-prob. number of

train test parameters
GMM(1)-diag -727.915 -728.647 1,026
GMM(4)-diag -599.642 -648.818 4,104
GMM(16)-diag -485.072 -665.609 16,416
GMM(32)-diag -379.980 -717.523 32,832
GMM(1)-full 2207.177 -89202.438 132,354
RBM(1) -685.799 -700.938 1,027
RBM(10) -629.906 -649.823 5,653
RBM(50) -587.146 -628.222 30,317
RBM(200) -576.461 -617.480 103,313
RBM(1000) -562.439 -583.169 514,513

3. EXPERIMENTS

3.1. Experimental conditions

A 1-hour Chinese speech database produced by a professional fe-
male speaker was used in our experiments. It consisted of 1,000 sen-
tences together with the segmental and prosodic labels. The wave-
forms were recorded in 16kHz/16bit format.

When constructing the baseline system, 41-order mel-cepstra
(including 0-th coefficient for frame power) were derived from the
spectral envelope by STRAIGHT analysis at 5ms frame shift. The
F0 and spectral features consisted of static, velocity, and acceler-
ation components. A 5-state left-to-right HMM structure with no
skips was adopted to train the context-dependent phone models. The
covariance matrix of the single Gaussian distribution at each HMM
state was set to be diagonal.

In the spectral envelop modeling, the FFT length of the S-
TRAIGHT analysis was set to 1024 which meant 513 visible units
were used in the RBMs. For each context-dependent state, the
spectral amplitudes at each frequency point were logarithmized and
normalized to zero mean and unit variance. CD learning with 1-step
Gibbs sampling (CD1) was adopted for the RBM training and the
learning rate was 0.0001. The batch size was set to 10 and 200
epochs were executed for estimating each RBM.

Fig. 2. The histogram and its gray-scale mapping for two dimensions
of the spectral envelopes in the training set used in Table 1(b). The
red circle and the blue star indicate the mean of the GMM(1)-diag
model and the estimated mode of the RBM(50) model respectively.

3.2. RBM training

First, we compared the performance of the Gaussian mixture model
(GMM) and the RBM in modeling the distribution of mel-cepstra
and spectral envelopes for a specific state. A context-dependent s-
tate with 720 samples was used in this experiment. 520 samples were
used for training the GMM and RBM models. The remaining 200
samples were used as a test set. The number of Gaussian mixtures
varied from 1 to 32 and the number of hidden units in the RBMs var-
ied from 1 to 1000. The average log-probabilities on the training and
test sets for different models are shown in Table 1 for the mel-cepstra
and the spectral envelopes respectively. Examining the difference
between the training and test log-probabilities in both tables, we see
that the GMMs have a clear tendency for over-fitting as model com-
plexity increases. On the other hand, the RBM shows consistently
good generalization ability as the number of hidden units increases.
From Table 1(a), we can see that the best GMM and the best RB-
M have very close log-probabilities on the test set when modeling
the mel-cepstra. Once the spectral envelopes are used, the RBMs
give much higher log-probabilities to the test data than the GMMs
as shown in Table 1(b). This can be attributed to the fact that the
mel-cepstral analysis serves to decorrelate the spectral parameters,
while the RBMs are able to analyze the latent patterns embedded in
the high-dimensional raw data with inter-dimensional correlations.
The histogram for two dimensions of the spectral envelopes in the
training set is illustrated in Fig. 2. We can observe the multimodal
distribution of the training samples and the space containing the es-
timated RBM mode has higher sample frequency than that of the
Gaussian mean.

Considering the computational cost of RBM training, the num-
ber of hidden units were set to 50 in our following experiments. It
took about 57 hours to train the RBMs for all the context-dependent
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Table 2. Average log-probabilities on the training database for the
SPE-Gaussian and SPE-RBM systems.

ave. log prob.
SPE-Gaussian -727.915
SPE-RBM -614.123

Table 3. Average log-probabilities of the Gaussian means and the
RBM modes for the RBMs trained in the SPE-RBM system.

ave. log prob.
SPE-Gaussian means -672.363
SPE-RBM modes (initial) -556.077
SPE-RBM modes (optimized) -518.800

HMM states using a server with a 2.5GHz Intel Xeon E5420 CPU.
Finally, three systems were constructed for comparison.

• MCEP-Gaussian The baseline system, in which the mel-
cesptrums were used for spectral modeling and the state PDFs
were in the form of single Gaussian distributions.

• SPE-RBM Our proposed method in Section 2.2, in which
RBMs were adopted to model the spectral envelopes of each
state.

• SPE-Gaussian The only difference to our proposed method
was that the single Gaussian distribution instead of RBM was
used for spectral envelope modeling.

The average log-probabilities on the training database for the SPE-
Gaussian and SPE-RBM systems are compared in Table 2.

3.3. Mode estimation for the RBMs

After the modes of all context-dependent RBMs in the SPE-RBM
system were estimated following the method introduced in Section
2.3, the log-probabilities of the initial v(0) and the optimized v∗ were
calculated for each RBM. The average log-probabilities over all s-
tates are listed in Table 3 together with the results calculated using
the Gaussian mean vectors of the SPE-Gaussian system. From this
table, we see that the initial RBM modes have much higher log-
probability than the Gaussian means known to have the highest prob-
ability for a single Gaussian distribution. The log-probability of the
RBM modes increases further after the iterative optimization. Com-
paring Table 2 and 3, we can find that the Gaussian means have
much lower log-probabilities than the training samples once they are
described using the RBMs. This implies the superiority of the RBMs
over the GMMs in avoiding the use of the sample means during pa-
rameter generation under the maximum output probability criterion.

The spectral envelopes corresponding to the Gaussian mean
of the MCEP-Gaussian system, the Gaussian mean of the SPE-
Gaussian system, and the estimated mode of the SPE-RBM system
for one state are illustrated in Fig. 3. We can see that the spectral
envelope recovered from the state mean of the MCEP-Gaussian sys-
tem is very close to that from the state mean of the SPE-Gaussian
system. The estimated state mode of the SPE-RBM system has
much sharper formant structure and less over-smoothing than the
other two envelopes.
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Fig. 3. The spectral envelopes corresponding to the Gaussian mean
of the MCEP-Gaussian system, the Gaussian mean of the SPE-
Gaussian system, and the estimated mode of the SPE-RBM system
for one state.

Table 4. Subjective preference scores (%) between speech synthe-
sized using the MCEP-Gaussian and SPE-RBM systems, where N/P
denotes “No Preference” and p means the p-value of t-test between
these two system.

MCEP-Gaussian SPE-RBM N/P p
14.67 61.33 24.00 0.00

3.4. Subjective evaluation

Because the MCEP-Gaussian and SPE-Gaussian systems had very
similar parameter generation results, only the MCEP-Gaussian and
the SPE-RBM systems were compared in a preference test on the
naturalness of synthetic speech. Fifteen sentences out of the training
database were selected and synthesized using these two systems re-
spectively. Five Chinese-native listeners with no hearing problems
took part in the test. Table 4 shows the preference scores between
these two systems and the p-values given by t-test. We see that
the SPE-RBM system has significantly better naturalness than the
MCEP-Gaussian system.1

4. CONCLUSIONS

We have proposed an RBM-based spectral envelope modeling
method in this paper. The spectral envelopes extracted by S-
TRAIGHT vocoder are modeled by an RBM for each HMM state.
At synthesis time, the mode vectors of the trained RBMs are esti-
mated and used in place of the Gaussian means for parameter gener-
ation. Our experimental results show the superiority of RBMs over
Gaussian mixture models in describing the distribution of spectral
envelopes as a density model and in alleviating the over-smoothing
effect at synthesis time. Incorporating the dynamic features of spec-
tral envelopes into RBM modeling and extending RBM to deep
belief networks (DBN) [15] or deep Boltzmann machines (DBM)
[7] will be the tasks of our future work.

1Some examples of the synthetic speech using these two methods can be
found at http://staff.ustc.edu.cn/~zhling/SPERBM-ICASSP2013/demo.html.
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