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ABSTRACT

The problem of pitch tracking has been extensively studied in
the speech research community. The goal of this paper is to investi-
gate how these techniques should be adapted to singing voice analy-
sis, and to provide a comparative evaluation of the most representa-
tive state-of-the-art approaches. This study is carried out on a large
database of annotated singing sounds with aligned EGG recordings,
comprising a variety of singer categories and singing exercises. The
algorithmic performance is assessed according to the ability to detect
voicing boundaries and to accurately estimate pitch contour. First,
we evaluate the usefulness of adapting existing methods to singing
voice analysis. Then we compare the accuracy of several pitch-
extraction algorithms, depending on singer category and laryngeal
mechanism. Finally, we analyze their robustness to reverberation.

Index Terms— singing analysis/synthesis, pitch extraction

1. INTRODUCTION

Over the last decades, research fields associated with speech under-
standing and processing have seen an outstanding development. This
development has brought a diverse set of algorithms and tools for
analyzing, modeling and synthesizing the speech signal. Although
singing is achieved by the same vocal apparatus, transposing the
speech approaches to singing signals may not be straightforward [1].
In particular, pitch range in singing is wider than in speech, pitch
variations are more controlled, dynamic range is greater, and voiced
sounds are sustained longer. The impact of source-filter interaction
phenomena is also greater in singing than in speech, and thus they
can less easily be neglected [2]. In addition, the diversity in singer
categories and singing techniques make it difficult to consider the
”singing voice” as a whole and take a systematic analysis approach.
As a result, speech and singing research fields have rather evolved
side by side, obviously sharing several approaches, but singing re-
search has not encountered the same formalization and standardiza-
tion as in speech research.

One consequence of such a difficulty to approach the wide range
of singing voices as a whole is the lack of singing synthesis tech-
niques that can address such variability. It results in a limited set
of singing synthesizers, generally focusing on one singer category
or one singing technique. Therefore it remains quite far from ex-
pressive abilities of real humans, but also far from concrete needs
of musicians wishing to use these tools. Among existing systems,
Harmonic plus Noise Modeling (HNM) has been used extensively
[3]. In SMS [4] and Vocaloid[5], HNM is used to bring a degree of
control over a unit concatenation technique [6], though it limits the
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synthesis results in the range of the prerecorded samples. In CHANT
[7], FOF [8] synthesis has been coupled with a rule-based descrip-
tion of some typical operatic voices, showing remarkable results for
soprano voices. Meron has applied the non-uniform unit selection
technique to singing synthesis [9], showing convincing results but
only for lower registers. Similar strategies have been applied to for-
mant synthesis, articulatory synthesis [10] and HMM-based tech-
niques [11], with similar limitations in extending the range of vocal
expression.

In this research, we make the first step in building an analysis
framework, targeting the synthesis of the singing voice for a wide
range of singer categories and singing techniques. Indeed we have
been working on expressive HMM-based speech synthesis for sev-
eral years [12, 13, 14] and we now aim to adapt our analysis frame-
work to a wide range of singing voice databases. The purpose of
this benchmarking work is to systematically evaluate various anal-
ysis algorithms – which happen to come from speech processing –
among a large reference database of annotated singing sounds and
drive some differentiated conclusions, i.e. determine the best choices
to make regarding various properties of the singer and the singing
technique. Our first study focuses on pitch extraction, as it is among
the most prominent parameters in singing analysis/synthesis and it
will be used as the foundation for many further analysis techniques.
We also decided to discuss the pitch extraction errors among three
main properties: singer category, laryngeal mechanism and the effect
of reverberation.

The structure of the paper is the following: Section 2 briefly
describes the pitch trackers that are compared in this study, and in-
vestigates what adaptation can be considered to make them suitable
for singing voice analysis. Our experimental protocol is presented
in Section 3, along with the database, the ground truth extraction
and error metrics. Results are discussed in Section 4, investigating
the impact of various factors on the performance of pitch trackers.
Finally, we narrow down some conclusions to the study in Section 5.

2. METHODS FOR PITCH EXTRACTION

2.1. Existing Methods

In this paper, we compare the performance of six of the most repre-
sentative state-of-the-art techniques for pitch extraction. They were
reported to provide some of the best results to analyze speech signals
[15], and are now briefly described.

• PRAAT: Commonly used in speech research, the PRAAT
package [16] provides two pitch tracking methods. In this pa-
per, we used PRAAT’s default technique which is based on an
accurate autocorrelation function. This approach was shown
in [16] to outperform the original autocorrelation-based and
the cepstrum-based techniques on speech recordings.
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• RAPT: Released in the ESPS package [17], RAPT [18] is a
robust algorithm that uses a multi-rate approach. Here, we
use the implementation found in the SPTK 3.5 package [19].

• SRH: As explained in [15], the Summation of Residual Har-
monics (SRH) method is a pitch tracker exploiting a spectral
criterion on the harmonicity of the residual excitation signal.
In [15], it was shown to have a performance comparable to
the state-of-the-art on speech recordings in clean conditions,
but its use is of particular interest in adverse noisy environ-
ments. In this paper, we use the implementation found in the
GLOAT package [20].

• SSH: This technique is a variant of SRH which works on the
speech signal directly, instead of the residual excitation.

• STRAIGHT: STRAIGHT [21] is a high-quality speech anal-
ysis, modification and synthesis system based on a source-
filter model. There are two pitch extractors available in the
package and we use the more recently integrated one as pub-
lished in [22]. This method is based on both time interval
and frequency cues, and is designed to minimize perceptual
disturbance due to errors in source information extraction.

• YIN: YIN is one of the most popular pitch estimators. It is
based on the autocorrelation method, making several refine-
ments to reduce possible errors [23]. In this paper, we used
the implementation freely available at [24].

The following section aims at investigating how these techniques
can be adapted for the analysis of singing voice.

2.2. Adapting Pitch Trackers to Singing Voice

Since the algorithms presented in Section 2.1 have been designed
and optimized for speech, the set of default input parameters might
not be suitable for processing the singing voice. To measure the ef-
fect of various parameters, we applied a range of input parameters
where available, depending on the algorithm. The main parameter
we varied was the window length, as it introduces a trade-off be-
tween analyzing low-pitched voices (which requires longer windows
encompassing at least two glottal cycles to have a periodicity) and
precisely following the pitch contour (which requires shorter win-
dows to capture fine pitch variations). For SRH, SSH and YIN, win-
dow length was varied and optimized; with values of 125 ms, 100
ms and 10 ms respectively, in comparison to the respective default
values of 100 ms, 100 ms and 16 ms. (SSH happened to use the opti-
mum value by default). As a second parameter, we addressed setting
the threshold used for voiced/unvoiced (V/UV) detection. This was
applied for PRAAT, SRH and SSH with values of 0.25, 0.065 and
0.095 respectively, in comparison to the default values of 0.45, 0.07
and 0.07. For the purpose of consistency, the F0 search range was set
between 60-1500 Hz, to account for the wide vocal range in singing.
A 10-ms frame shift was chosen for all methods, with the exception
of STRAIGHT. Since the STRAIGHT algorithm is partially-based
on instantaneous frequency, and the default shift interval is 1ms, us-
ing 10 ms caused significant inaccuracies and large jumps in the con-
tour. To compare results to the others, we used the default shift of 1
ms, and downsampled the resultant contour by 10. We also verified
the synchronicity of these contours by visually comparing a small
but representative set against the corresponding RAPT contours.

Covering all combinations of parameters would have required
a prohibitively large amount of computation time, consequently we
chose to use a two-stage search for the best values. This is an ac-
ceptable substitute to complete optimization, since the two consid-
ered parameters have different, almost independent effects on the

performance. In this process, we first find the best threshold value at
the default window length by minimizing the voicing decision error
(see Section 3.3). Then, we find the best window length value by
minimizing F0 frame error (see Section 3.3) at this threshold value.

Additionally, as a complement to the methods described in Sec-
tion 2.1 and their optimized versions, we investigated the usage of
a post-processing approach [25] originally developed for improving
YIN results on music data. This post-process makes use of statistical
information as well as some musical assumptions to correct sudden
changes the F0 contour. Even though not all algorithms are heavily
prone to such errors, we applied it to all of them for a fair comparison
(see Section 4).

In the cases where reliable voiced/unvoiced decisions were not
available, we substituted the decisions from RAPT to calculate error
metrics which required them. Specifically, these cases were YIN and
STRAIGHT, the former due to YIN not providing these decisions,
and the latter due to prohibitively high error rate, making compar-
isons incompatible, as will be explained further in Section 4

3. EXPERIMENTAL PROTOCOL

3.1. Database

For this study, the scope was constrained to vowels in order to limit
the effects of co-articulation on pitch extraction. Samples for 13
trained singers were extracted from the LYRICS database recorded
by [26, 27]. The selection comprised 7 bass-baritones (B1 to B7), 3
countertenors (CT1 to CT3), and 3 sopranos (S1 to S3). The record-
ing sessions took place in a soundproof booth. Acoustic and elec-
troglottographic signals were recorded simultaneously on the two
channels of a DAT recorder. The acoustic signal was recorded using
a condenser microphone (Brüel & Kjær 4165) placed 50 cm from
the singer’s mouth, a preamplifier (Brüel & Kjær 2669), and a con-
ditioning amplifier (Brüel & Kjær NEXUS 2690). The electroglotto-
graphic signal was recorded using a two-channel electroglottograph
(EG2, [28]). The selected singing tasks comprised sustained vow-
els, crescendos-decrescendos and arpeggios, and ascending and de-
scending glissandos. Whenever possible, the singers were asked to
sing in both laryngeal mechanisms M1 and M2 [29, 30]. Laryngeal
mechanisms M1 and M2 are two biomechanical configurations of
the laryngeal vibrator commonly used in speech and singing by both
male and females. Basses, baritones and countertenor singers mainly
use M1 for singing, but they also have the possibility to sing in M2
in the medium to high part of their tessitura. Sopranos mainly sing
in M2, but they can choose to sing in M1 in the medium to low part
of their tessitura.

3.2. Ground Truth

In order to objectively assess the performance of pitch trackers, a
ground truth (i.e a reference pitch contour) is required. To obtain
this, we used the RAPT algorithm on the synchronized electroglot-
tography (EGG) recordings. The choice of RAPT is justified by
the fact that it was shown in [15] to outperform other approaches
on clean speech signals. In addition, we produced pitch contours
extracted from both the EGG and the differentiated-EGG (dEGG)
signals, and applied a manual verification process by visually com-
paring each contour to the spectrogram of the EGG signal. We then
either selected the better of the two options, or excluded the consid-
ered sample from the experiment if both were found to be erroneous
in some parts. The resultant experiment database consists of 524
recordings for which we have a reliable and accurate ground truth.
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3.3. Error Metrics

In order to assess the performance of the pitch extraction algo-
rithms,the following four standard error metrics were used [31]:

• Gross Pitch Error (GPE) is the proportion of frames, con-
sidered voiced by both pitch tracker and ground truth, for
which the relative pitch error is higher than a certain thresh-
old (usually set to 20% in speech studies [15]). In this work,
we fixed this threshold to one semitone, in order to make the
results meaningful from the musical perception point of view.
All error calculations are done in the unit of cents (one semi-
tone being 100 cents).

• Fine Pitch Error (FPE) is the standard deviation of the dis-
tribution of relative error values (in cents) from the frames
that do not have gross pitch errors. Both estimated and refer-
ence V/UV decisions must then be voiced.

• Voicing Decision Error (VDE) is the proportion of frames
for which an incorrect voiced/unvoiced decision is made.

• F0 Frame Error (FFE) is the proportion of frames for which
an error (either according to the GPE or the VDE criterion) is
made. FFE can be seen as a single measure for assessing the
overall performance of a pitch tracker.

4. RESULTS

Our experiments are divided into four parts. In Section 4.1, the need
to adapt pitch trackers for the analysis of singing voice is quanti-
fied. Sections 4.2 and 4.3 investigate the effect of singer category
(baritone, countertenor, soprano) and laryngeal mechanism on pitch
estimation performance. Finally the robustness to reverberation is
studied in Section 4.4.

4.1. Utility of Adapting Pitch Trackers to Singing Voice

The overall performance of the compared techniques (with their
variants) across the whole database is displayed in Table 1. To dis-
tinguish between the two steps mentioned in Section 2.2(parameter
optimization and post-processing), an asterisk denotes the post-
processed version of the algorithm output, letter v denotes that
V/UV decisions from RAPT was used instead of the algorithm’s
own, and letter u denotes ”unoptimized”, meaning the results were
obtained with default input parameters. Optimization was done on
window length and V/UV threshold, for SRH, SSH, YIN, and SRH,
SSH, PRAAT, respectively. The effect of optimization is marginal on
PRAAT results, however, it is significant on SRH and SSH. This is
due in great extent to a proper selection of the window length which
results in a noticeable decrease of GPE, as well as slight reduction of
FPE. For YIN, we observe a small and acceptable trade-off between
GPE and FPE when optimized for GPE.

As mentioned in Section 2.2, V/UV decisions from RAPT are
used for all error calculations of STRAIGHT and YIN. Using the
V/UV decisions from STRAIGHT, we observed VDE rates higher
than 30% among all data groupings we investigated. While this had
the side effect of greatly improving GPE due to selection bias, it
was not a consistent comparison to the other methods, thus we com-
pletely discarded V/UV decisions from STRAIGHT.

Except for STRAIGHT and PRAAT, it can be observed that ap-
plying the post-process yields an appreciable improvement for all
other techniques. While maintaining a constant efficiency in terms
of voicing decisions, and similar FPE performance, the post-process

allows an important reduction of GPE. This is particularly well em-
phasized for RAPT and YIN algorithms. In the remainder of our
experiments, we will always refer to the optimized, post-filtered re-
sults from an algorithm as it leads to the best results.

Comparing the various techniques in Table 1, we observe that
PRAAT, followed by RAPT, gives the best determination of voicing
boundaries. Regarding the accuracy in the pitch contour estimation,
RAPT* and YIN* provide the lowest gross error rates, while YIN is
clearly seen to lead to the lowest FPE.

Table 1. Error Rates Across the Whole Dataset

GPE (%) FPE (C) VDE (%) FFE (%)
RAPT 1.01 21.96 1.05 1.99
RAPT* 0.65 21.98 1.05 1.66
STRAIGHTv 1.26 17.22 1.05 2.22
STRAIGHTv* 1.25 17.22 1.05 2.21
PRAATu 1.47 21.91 0.81 2.18
PRAAT 1.41 21.93 0.81 2.15
PRAAT* 1.41 21.94 0.81 2.13
SRHu 1.91 18.99 1.28 3.08
SRH 1.72 17.33 1.33 2.95
SRH* 1.61 17.36 1.33 2.84
SSHu 3.51 19.66 1.27 4.55
SSH 2.40 19.46 1.39 3.61
SSH* 1.91 19.43 1.39 3.16
YINvu 2.69 8.38 1.05 3.56
YINv 2.44 12.79 1.05 3.32
YINv* 0.91 12.95 1.05 1.9

4.2. Effect of Singer Categories

Three categories of singers, characterized by different vocal ranges
(indicated hereafter between parentheses as musical notes) are rep-
resented in our database: baritones (F2 to F4), countertenors (F3 to
F5), and sopranos (C4 to C6). The effect of the singer category on
the GPE, which should reflect the pitch range differences, is given
in Figure 1. Except for SRH which suffers for a dramatic degra-
dation for sopranos, the performance of all other techniques follow
the same trends: GPE decreases as the vocal range goes towards
higher pitches. Going from baritones to sopranos, GPE is observed
to be divided by a factor between 2 and 4, depending on the consid-
ered technique. Our results on FPE revealed similar conclusions: for
all methods, the standard deviation of the relative pitch error distri-
bution decreases from baritones to sopranos. This reduction varies
between 2 and 7 cents across algorithms, with the best performance
achieved by YIN* (15 cents for baritones, and 8.4 cents for sopra-
nos).

4.3. Effect of Laryngeal Mechanisms

Laryngeal mechanisms used by singers have been described in Sec-
tion 3.1. We now inspect what the influence of these mechanisms is
on the efficiency of the compared pitch estimation techniques. The
impact on FPE is illustrated in Figure 2. Again, it is observed that
YIN* provides the best FPE results. Consistently across all algo-
rithms, M2 is noticed to lead to lower FPE values. This actually
corroborates our findings on the singer category: FPE performance
improves as the pitch increases. In the same way, the conclusions
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Fig. 1. Effect of Singer Category on Gross Pitch Error (GPE)

we have drawn in Section 4.2 for GPE are also observed here1: M2
is characterized by lower GPE values for all methods except SRH*
(whose results for M2 are the worst by a significant margin).
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Fig. 2. Effect of Laryngeal Mechanism on Fine Pitch Error (FPE)

4.4. Robustness to Reverberation

In many concrete cases, singers are placed within large rooms or
halls, where the microphone might capture replicas of the voice
sound stemming from reflections on the surrounding walls or ob-
jects. To simulate such reverberant conditions, we considered the
L-tap Room Impulse Response (RIR) of the acoustic channel be-
tween the source to the microphone. RIRs are characterized by the
value T60, defined as the time for the amplitude of the RIR to decay
to -60dB of its initial value. A room measuring 3x4x5 m and T60

ranging {100, 200, . . . , 500} ms was simulated using the source-
image method [32] and the simulated impulse responses convolved
with the clean audio signals.

Results of GPE as a function of the level of reverberation are pre-
sented in Figure 3. Even in the less severe condition (i.e. when T60 is
100 ms), the performance of pitch estimation techniques is observed
to be affected (these results are to be compared with those reported
in Table 1 for non-reverberant recordings). More particularly, YIN*
suffers from the most important degradation: with a GPE of 0.91%,
it now reaches a value around 7%. In contrast, STRAIGHTv* turns
out to be the most robust as it keeps almost the same GPE as in the

1Figure omitted due to space constraints.

clean conditions. Regarding their evolution with the reverberation
level, all techniques exhibit a similar behavior, with an increase of
GPE between 3 and 6% as T60 varies from 100 to 500 ms.
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Fig. 3. Effect of Reverberation on Gross Pitch Error (GPE)

The impact of reverberation on FPE is also examined1. Although
all techniques but STRAIGHTv* were found to suffer from a sub-
stantial increase of GPE even when T60 is 100 ms, the effect on FPE
is much less pronounced. At that level, we observed that pitch esti-
mators have their FPE increasing by 3 to 5 cents, which is relatively
minor; with the exception of YIN*: shown to exhibit the strongest
degradation in terms of gross pitch errors, here, it reaches the best
accuracy. Regarding their evolution with the reverberation degree,
all methods behave very similarly with an increase of FPE between
9 and 13 cents as T60 goes from the slightest to the strongest degra-
dation. As a conclusion; even though some techniques (especially
YIN*) produce a much higher number of gross errors in reverberant
environments, it seems that their ability to precisely follow the pitch
contour (when no gross error is made) is rather well preserved.

5. CONCLUSION

As a first step towards developing efficient techniques of singing
voice analysis and synthesis, this paper provided a comparative
evaluation of pitch tracking techniques. This problem has been ad-
dressed extensively for the speech signal, and the goal of this paper
was to answer two open questions: i) what adaptation is required
when analyzing singing voice?, and ii) what is the best method to
extract pitch information from singing recordings? Six of the most
representative state-of-the-art methods were compared on a large
dataset containing a rich variety of singing exercises. As an answer
to question i, both the use of parameter settings specific to singing
voice and post-processing of pitch estimates led to an appreciable
reduction of gross pitch errors. The answer to question ii depended
on the considered error metric. PRAAT and RAPT provided the
best determination of voicing boundaries. RAPT reached the lowest
number of gross pitch errors. YIN achieved the best accuracy. Pitch-
estimation performances were better for sopranos than for baritones
and counter tenors, and for singers in laryngeal mechanism M2. Fi-
nally, the robustness of the techniques in reverberant conditions was
studied, showing that YIN suffered from the strongest degradation,
while STRAIGHT was the most robust.
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