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ABSTRACT

The segregation of concurrent speakers and other sound
sources is an important aspect of the human auditory sys-
tem but is missing in most current systems for automatic
speech recognition (ASR), resulting in a large gap between
human and machine performance. The present study uses a
physiologically-motivated model of binaural hearing to esti-
mate the position of moving speakers in a noisy environment
by combining methods from Computational Auditory Scene
Analysis (CASA) and ASR. The binaural model is paired
with a particle filter and a beamformer to enhance spoken sen-
tences that are transcribed by the ASR system. Results based
on an evaluation in clean, anechoic two-speaker condition
shows the word recognition rates to be increased from 30.8%
to 72.6%, demonstrating the potential of the CASA-based
approach. In different noisy environments, improvements
were also observed for SNRs of 5 dB and above, which was
attributed to the average tracking errors that were consistent
over a wide range of SNRs.

Index Terms— Automatic speech recognition, particle
filter, beamformer, computational auditory scene analyses

1. INTRODUCTION

The human auditory system is known to be able to easily an-
alyze and decompose complex acoustic scenes into its con-
stituent acoustic sources. This requires the integration of a
multitude of acoustic cues, a phenomenon that is often re-
ferred to as cocktail-party processing. Auditory Scene Anal-
ysis, especially the segregation and comprehension of con-
current speakers, is one of the key features in cocktail-party
processing [1].

While most of today’s ASR systems do not incorporate
features estimated from the acoustic scene, the concept of
using multi-source recordings for signal enhancement has
been investigated in a number of studies: The approach of an
ideal binary mask has been adopted for speaker segregation,
e.g. in combination with binaural cues [2], and automatic
speech recognition ([3], [4]). These studies try to find reliable
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time-frequency (T-F) regions in which one speaker is dom-
inant and use only these reliable information instead of all
information which seems to have a detrimental effect on the
overall performance of the system. In [5], binaural tracking of
multiple sources using Hidden Markov models and Kalman
filters is discussed, but its application to ASR is not assessed.
More technical approaches use microphone arrays to perform
speaker segregation (e.g. [6]). For speech recognition these
systems are often combined with beamforming algorithms
[7].

While these microphone arrays have no physiological
basis and binaural cues are often obtained using cross-
correlation methods [2], the present paper uses an physio-
logically based binaural model [8] extracting interaural phase
differences (IPD) and interaural level differences (ILD) to
achieve robust direction of arrival (DOA) estimation of mul-
tiple speakers. In a two-speaker scenario, we use these DOA
estimations to steer a beamformer to enhance the signal of
the desired sound source, which mimics the cognitive pro-
cess of paying attention to one speaker and improves ASR
performance significantly. The paper is structured as follows:
Section 2 describes the experimental setup and goes into each
processing step in more detail. ASR results are presented
in Section 3, which are compared to the performance of an
ASR system working on unprocessed signals. Finally, we
summarize and conclude our study in Section 4.

2. EXPERIMENTAL SETUP

Binaural Model:
DOA estimation

Particle Filters:
Speaker Tracking

>
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Simulation o —>| Automatic speec
| Beamformer |
Speech Data moving speakers > recognizer
>
>

Fig. 1. Block diagram of the experimental setup. See text for
details.

Fig. 1 shows a block diagram of the whole process-
ing chain from the speech data to the ASR System. Mov-
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ing speakers are generated by convolving speech data with
recorded 8-channel head-related transfer functions (HRIR) (2
in-ear channels and 3 channels from each of two behind-the-
ear (BTE) hearing aids). The in-ear signals are fed into the
binaural model which is employed to estimate the direction
of arrival of spatially distributed speakers. A particle filter is
then used to keep track of the positions of the moving speak-
ers. Its output is used to steer a beamformer, enhancing the
6-channel speech signal that is to be transcribed by an ASR
system. In the following sections each of these processing
steps is described in more detail.

2.1. Speech Data

The speech data used for the experiments consists of sen-
tences produced by 10 speakers (4 male, 6 female). The
syntactical structure and the vocabulary were adapted from
the Oldenburg Sentence Test (olsa) [9], i.e., each sentence
contains five words with 10 alternatives for each word and a
syntax that follows the pattern <name><verb><number>
<adjective><object>, which results in a vocabulary size of
50 words. The original recordings with a sampling rate of
44.1 kHz were downsampled to 16 kHz and concatenated (us-
ing three sentences from the same speaker) to obtain utter-
ances with a duration of 5 to 10 s, suitable for speaker track-
ing.

The HRIRs used in this study are a subset of the database
described in [10]: Anechoic free-field HRIRs from the frontal
horizontal half-plane measured at a distance of 3 meters be-
tween microphones and loudspeaker were selected. The
HRIRSs from the database were measured with a 5° resolution
for the azimuth angles, which was interpolated to obtain a
0.5° resolution.

2.2. Binaural Model

For direction of arrival estimation, we use the IPD model pro-
posed by Dietz et al.[8]. In the following only the conceptu-
ally relevant aspects are briefly reviewed.

Multi channel signals are analyzed in 23 auditory filters in
the range of 200 Hz to 5.0kHz. Considering the human limit
to binaurally exploit fine-structure information above ~ 1.4
kHz, the fine-structure filter is only implemented in the 12
lowest auditory filters below 1.4kHz. A problem for fine-
structure interaural phase differences in filters above 700 Hz is
that their corresponding interaural tie differences do no longer
cover the whole range of possible interaural delays, resulting
in an ambiguity of direction. Inspired by psychoacoustic find-
ings such as time-intensity trading (e.g., [11]) the sign of the
ILD is employed here to extend the unambiguous range of
IPDs from [—m, ] to [—27, 27]. Accordingly, the frequency
range for unambiguous fine-structure IPD-to-azimuth map-
ping is extended from ~ 700 Hz to 1400 Hz. IPD-to-azimuth
mapping itself is performed with a previously learned map-
ping function. In this model, the IPD fluctuations are directly

accessible and are specified in the form of the interaural vec-
tor strength (IVS). The IVS was used to derive a filter mask
which consists of a binary weighting of the interaural param-
eters based on a threshold value IVSy = 0.98.

By processing each of these high-coherence segments as
a single event called “glimpse”, a sparse representation of the
binaural features is generated from the median value of the
azimuth estimation of this segment. If the IVS constantly ex-
ceeds IVS for more than 20 ms, a new glimpse is assigned
from the same segment.

2.3. Particle Filter

The main challenge in the tracking of multiple targets is the
mapping from observations (in this case, DOA glimpses)
to a specific target, which is a prerequisite for the actual
tracking. In this study, an algorithm provided by Sarkka et
al.[12] is applied to solve this problem. The main idea of
the algorithm is to split up the problem into two parts (“Rao-
Blackwellization”). First, the posterior distribution of the
data association is calculated using a Sequential Importance
Resampling (SIR) particle filtering algorithm. Second, the
single targets are tracked by an extended Kalman filter that
depends on the data associations. Rao-Blackwellization ex-
ploits the fact that it is often possible to calculate the filtering
equations in closed form. This leads to estimators with less
variance compared to the method using particle filtering alone
[13]. For more details of the algorithms see [14] and [12].
The particle filter was initialized with a set of 20 particles
using a known starting position of the first speaker (i.e., the
location variable of the first target was set to the position for
all particles). The location variable of the second target was
altered for each particle in equidistant steps throughout the
whole azimuth range. Initial velocities were set randomly be-
tween & 2 m/s for each target in each particle. If no glimpse
is observed at time step ¢, the update step of the Kalman filter
was skipped for this time step and the prediction was made
based on the internal particle states. The range of the pre-
dicted angles was limited to the interval [-90°,90°] by setting
all predictions outside that range to -90° or 90°, respectively.

2.4. Steerable beamformer for source selection

In the proposed application, a position estimate for both the
target and concurrent speaker are required to control the
beamformer parameters to either enhance the speech of a
certain speaker or strongly suppress a concurrent speaker,
thereby increasing the overall signal-to-noise ratio and subse-
quently lower the word error rates of an automatic speech rec-
ognizer. The beamformer employed here is a super-directive
beamformer based on the minimum variance distortionless
response principle [15] that used the six BTE microphone
inputs jointly. Let W be the matrix containing the frequency
domain filter coefficients of the beamformer, d; and ds the
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vectors containing the transfer functions to the microphones
of speakers one and two, respectively, and @y the noise
power-spectral density (PSD) matrix. Then, the following
minimization problem has to be solved

min WH(I)VVW
w (H
with WHdy = 1and WHdy =0 .

The solution to this is the minimum variance distortionless re-
sponse beamformer [see 16, chap. 2]. The transfer functions
in vectors d; and ds result from the impulse responses which
are chosen based on the angle estimation of the tracking algo-
rithm. The coherence matrix which is required to solve Eq. 1
is also estimated using the impulse responses used for gen-
erating the signals. Note that relying on the true impulse re-
sponses implies the use of a-priori knowledgde not available
in a real-world application, for which the impulse responses
need to be estimated. The beamforming by itself therefore
represents an upper bound, and will be extended to be used
with estimated impulse responses in future work. However,
since the IPD model, the tracking algorithm and the ASR sys-
tem do not use such a-priori knowledge (reflecting realistic
conditions), and robust methods for estimation of impulse re-
sponses exist, the results should still be transferable to real-
world applications.

2.5. ASR system

For ASR, the pre-processed signals are first converted to ASR
standard features, i.e., Mel-Frequency Cepstral Coefficients
(MFCCs) [17]. By adding a delta and double-delta features,
39-dimensional feature vectors were obtained per 10 ms step.

The feature vectors are used to train and test the Hidden
Markov model (HMM) classifier, which has been set up as
word model with each word of the vocabulary corresponding
to a single HMM. A grammar reflecting the fixed syntax of
OLSA sentences is used to ensure a transcription with a valid
OLSA sentence structure. The HMM used ten states per word
model and six Gaussians per mixture and was implemented
using the Hidden Markov Toolkit (HTK) [18].

ASR training was carried out with three different condi-
tions, i.e. clean, multi and matched SNR condition. The train-
ing set contained a total of 71 sentences that were used as-is
for clean training ans in the multi condition training these 71
sentences were additionally mixed with a stationary speech
shaped noise at SNRs ranging from -5 dB to 20 dB in 5 dB
steps. This procedure was carried out five times using random
parts of the noise, resulting in a total training set of 2201 sen-
tences. The matched SNR training only consisted of the 71
sentences mixed 5 times at a specific SNR, resulting in a total
of 355 sentences.

For testing, signals with two moving speakers with iden-
tical SNRs as used for training were processed by the com-
plete chain depicted in Fig. 1 (one being the target source,

and the other one the suppressed source), and the recognition
rate for the words uttered by the target speaker was obtained.
The target speaker’s data was not contained in the training
data, resulting in a speaker-independent ASR system. To in-
crease the number of test items, each speaker was selected as
the target speaker once and the training/testing procedure was
carried out ten times. The test set contained a total of 781
two-speaker tracks for each SNR, so, the total number of test
sentences was 4686.

3. RESULTS

When using the complete processing chain that included the
DOA estimation, tracking, beamforming, and ASR, a word
recognition rate (WRR) of 72.7% was obtained for clean con-
dition training and testing. Although the WRRs in the multi
condition training were higher in all other test conditions, the
WRRs dropped down to 64.5% in clean testing (see Table 1).
This is due to the little amount of clean sentences (71 sen-
tences) in the training material compared to the 2130 sen-
tences with additional noise. The different amount of training
material is also the reason why the multi condition training
gave better results than the matched SNR training in nearly all
conditions. When the ASR system cannot operate on beam-
formed signals, but is limited to speech that was converted
to mono signals (by selecting one of the 8 channels from the
behind-the-ear or in-ear recordings), the average WRR was
29.4% when testing on clean signals. The variations of WRRs
between channels were relatively small, ranging from 28.1%
to 30.8%. When the best channel for each sentence was se-
lected, i.e., the channel that resulted in the highest WRR for
that specific sentence to simulate the best performance when
limited to one channel, the average WRR was increased to
38.8%.

SNR | Average tracking Word recognition rate [%]
[db] error [deg] Clean Multi Matched
-5 15.19 11.00 11.42 11.03
0 8.17 11.11 12.73 11.65
5 5.84 12.65 22.72 16.24
10 5.44 19.09 47.04 27.73
15 5.88 35.75 65.41 51.20
20 543 52.93 73.05 67.64
inf 5.00 72.65 64.53 72.65

Table 1. Average tracking error and word recognition rates
for all different SNR conditions. See text for details.

The word recognition rate also depends strongly on the
localization accuracy which was quantified by calculating the
average tracking error, which is the root median squared error
between the smoothed tracking estimates and the real azimuth
angles of the speakers. Table 1 shows the average tracking er-
ror in dependency of the SNR and the corresponding word
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Fig. 2. Top: Word recognition rate vs. average separation
at different SNRs for clean condition training (grey symbols)
and multi condition training (black symbols). Circles, trian-
gles and squares represent 0 dB, 10 dB and 20 dB SNR re-
spectively. Bottom: Word recognition rate vs. average track-
ing error for different signal to noise ratios and clean and
multi condition training. Dotted lines show the total word
recognition rate for the specific condition (see also Table 1).

recognition rates of all training conditions. The average sep-
aration of all two-speaker tracks was almost identical in all
clean or noisy conditions (ranging from 52.34° to 52.56°).
Hence, the different tracking errors can be attributed to the
corruption of noise. In particular, the DOA estimation with
its coherence mask suffers from the addition of diffuse noise.
Fig. 3 presents an exemplary tracking result of two speakers
in clean condition; the figure shows that the particle filter is
able to accurately track both speakers even when they cross.
The top panel of Fig.2 shows the dependency of WRR
on the average separation. It is obvious that spatially sepa-
rated speakers interfere much less than spatially close speak-
ers in high-SNR conditions. At 0 dB SNR the WRR does
neither depend on the separation of speakers nor on the kind
of training material. In addition, the WRR also depends on

the average tracking error. The bottom panel of Fig. 2 shows
the dependency of WRR on the average tracking error for 0
dB, 10 dB and 20 dB SNR in the multi-condition training.
The WRR is highly dependent on the average tracking error
at higher SNRs with higher tracking errors resulting in sig-
nificantly lower WRRs. This dependency is not observable
for O dB data, i.e., in a two-speaker scenario with low SNR,
the beamforming approach is limited by the presence of the
diffuse noise.

80 - E

60 - E

a0 :

Azimuth [deg]

0 1 2 3 4 5 6 7
Time [s]

Fig. 3. Tracking results of a two-speaker scenario in clean
condition. Light grey circles represent the glimpses produced
by the binaural model, dark grey lines represent the real az-
imuth angles of the speakers and the solid black lines show
the smoothed estimates obtained by tracking.

4. SUMMARY AND CONCLUSION

This study provided an overview of computational auditory
scene analysis based on binaural information and its appli-
cation to a speech recognition task. It was also shown that
the binaural model enables efficient tracking and greatly in-
creases the performance of an automatic speech recognition
system in situations with one interfering speaker. The word
recognition rate (WRR) was increased from 30.8% to 72.7%,
which shows the potential of integrating models of binaural
hearing into speech processing systems. It remains to be seen
if this performance gain in anechoic conditions can be vali-
dated in real-world scenarios, i.e., in acoustic conditions with
strong reverberation, several localized noise sources embed-
ded in a 3D-environment compared to the 2D simulation pre-
sented here, or with a changing number of speakers. Follow-
up studies in more realistic environments are planned where
on the one hand more robust ASR features and on the other
hand more information about the acoustic scene is used to im-
prove ASR performance.
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