
AN EXPERIMENTAL FRAMEWORK FOR THE DERIVATION OF
PERCEPTUALLY-OPTIMAL NOISE SUPPRESSION FUNCTIONS

Adrien Daniel1, Ludovick Lepauloux2, Christelle Yemdji1, Nicholas Evans1 and Christophe Beaugeant2

1EURECOM, Multimedia Department, Sophia-Antipolis, France
2Intel, Mobile and Communications Group, Sophia-Antipolis, France

firstname.lastname@{eurecom.fr,intel.com}

ABSTRACT
This paper presents a novel experimental framework designed

to derive, through subjective testings, noise suppression functions
which are perceptually optimal under specific experimental condi-
tions. Noisy speech sequences are continuously processed accord-
ing to a gain curve function of the a priori SNR that listeners are
required to adjust two points at a time with respect to specified per-
ceptual criteria. An experiment based on this framework is reported
testing one specific combination of speech and noise signals. The
specified perceptual criterion was the suitability for a phone con-
versation. The resulting mean experimental gain function shows a
statistically significant deviation from an ideal Wiener filter.

Experiments based on this framework are repeatable, suit un-
trained listeners and are considerably faster than conventional sub-
jective testing methods, without the necessity to place restrictive as-
sumptions on the assessed noise suppression function.

Index Terms— Subjective testing, auditory perception, noise
reduction, speech enhancement, Wiener filter

1. INTRODUCTION

In the context of speech enhancement, noise reduction involves the
recovery of a speech sequence from a recording corrupted with ad-
ditive noise. Most approaches work in the spectral domain and in-
volve: (i) the estimation of the noise power spectral density (PSD),
and (ii) the attenuation of noise according to an estimated gain func-
tion. This paper is concerned only with the latter.

Several theoretically derived gain functions have been pro-
posed [1]. Among the most popular are spectral subtraction [2],
Wiener filtering [3], Bayesian Estimators [4, 5], and subspace-based
methods [6]. While applied to human communications, such ap-
proaches do not always reflect subjective preferences.

An extensive body of work [7–14], has investigated the influ-
ence of more perceptual aspects. These approaches, however, are
generally based on a single aspect of sound perception: audibility
of noise, and rely on the masking properties of the human auditory
system. They do not address other aspects such as intelligibility or
ease of listening, or investigate the trade-off between the tolerance
of residual noise and speech distortion.

One recent exception [15] reports the estimation of preferred
noise suppression functions for users of cochlear implants. Partic-
ipants were required to listen to a noise-corrupted speech signal pro-
cessed in real time according to a parametric Wiener filter whose
parameters they adjusted to obtain optimal quality. Compared to pre-
vious perceptual approaches, where noise suppression functions are
derived theoretically according to models of the human auditory sys-
tem, such entirely subjective approaches tend to reflect more reliably

true perceptual preferences. In the described experiments, however,
estimated gain functions are restricted to those defined by a given
mathematical expression—only parameters in such expressions are
freely explored. In addition, subjective testing is notoriously time
consuming and expensive.

This paper presents a flexible framework to subjective testing
which aims to estimate perceptually-optimal gain functions without
any restrictive assumptions of their form. Though perhaps somewhat
trivial in its nature, the new approach is thoroughly justified, allows
for the estimation of gain functions in a rapid and repeatable fash-
ion and ensures a satisfactory level of statistical significance from
tests with a relatively small dataset of speech signals and number of
untrained listeners. This is illustrated in Section 3 which reports an
experiment based on this framework.

2. FRAMEWORK

The following describes the general principle behind the new ap-
proach, some constraints which allow for each listening test to in-
volve only two degrees of freedom, and the full experimental proce-
dure used to estimate a perceptually-optimal gain function.

2.1. Principle

The framework described here aims to estimate via a method of ad-
justment a set of noise suppression or gain functions which are per-
ceptually optimal for the respective experimental conditions. Gain
functions are estimated for a given set of experimental conditions,
defined in this paper by a specific noise type, the speaker gender and
the average signal-to-noise ratio (SNR). In any given test involving
one experimental condition, participants are required to optimize a
gain curve (see Figure 1, left window) according to some prescribed
perceptual criteria. Each test is composed of a number of trials in
which speech signals corrupted by noise are heard repeatedly while
subject to real-time filtering according to the current gain curve. Via
a number of given points, the gain curve is adjusted by the participant
to obtain an output speech which is ‘best’ according to the specified
criteria. Finally, test results are averaged across several participants
to obtain a listener-independent, perceptually optimized gain curve
for the given experimental condition.

However, crucial to the new approach proposed here and to re-
duce bias as much as possible, participants do not adjust the gain
curve directly, but instead by using an indirect, blind, adjustment
method, with the two-dimensional graphical user interface (GUI)
depicted in Figure 1 (right window). In each trial, each of the two
dimensions in this triangle area is mapped to the gain value of one
specific point on the curve. The positioning of the pointer in this
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Fig. 1. Left window (hidden to the participant): gain curve under
adjustment (dashed line with open ticks), monotonically increasing
constrained gain curve (dashed line with filled ticks), level-corrected
gain curve (solid line with filled ticks) which is used at last to com-
pute the gain filter, Wiener filter (dotted line). The two arrows point
to the pair of gain points under adjustment. Right window: GUI
manipulated by the participant. The pointing area is on a dB scale.

area is thus equivalent to the adjustment of gains associated with two
specific SNR values. When the participant considers a given pointer
position as best-matching the specified perceptual criteria, they vali-
date their selection and the next trial is presented. The pairs of gain
points considered in each trial are selected randomly while ensuring
that all points are adjusted an equal number of times.

Since this approach involves the adjustment of only two points
at a time, it is far less complicated than the simultaneous adjustment
of every point and is thus suitable to untrained listeners. The ap-
proach also reduces preconceived ideas regarding the profile of the
gain curve, since the underlying noise suppression process is hidden.
As described next, however, subjective testing in this way is slightly
more troublesome than might appear at first. In practice, various
constraints are necessary to ensure repeatable and consistent results.

2.2. Processing and constraints

The filtering process is implemented in the spectral domain using the
short time Fourier transform (STFT) and overlap-add linear convo-
lution [16]. Assuming that noisy speech signals result from additive
noise:

Y (k,m) = X(k,m) +D(k,m), (1)

where X is the clean speech signal and D is the noise signal. k and
m are the STFT frequency bin and temporal frame indexes respec-
tively.

LetG(ξ), a function of the a priori SNR ξ, be a real-valued gain
function resulting from the current adjustment of the gain curve by a
participant, and let the filtering output be given by:

X̂(k,m) = G(ξ(k,m))Y (k,m), with ξ(k,m) =
|X(k,m)|2

|D(k,m)|2 . (2)

ξ can either be exact or estimated using state-of-the-art noise esti-
mation algorithms [1,17], depending on the objectives of the testing
under conception.

During its adjustment by a participant, two constraints are im-
posed on the gain curve described by G(ξ).

Monotonicity constraints: first, since the lower the SNR in a
given frequency bin the higher the relative noise energy, and there-
fore the higher should be the associated suppression, the gain curve
is forced to be monotonically increasing. Let us denote the N -point

gain curve under adjustment by a set of couples (ξp, gp), p ∈ P =
{1, ..., N}, where ξp is the a priori SNR associated with point p, and
gp its corresponding gain value, and such that ∀p, q ∈ P, p < q ⇔
ξp < ξq . Let us also define p1, p2 ∈ P as the specific pair of points
under adjustment, such that p1 < p2. Restriction gp1 ≤ gp2 is phys-
ically ensured by preventing participants from moving the pointer
in the area where gp1 > gp2 , hence the triangular shape of the ex-
ploratory area in Figure 1 (right window). Each update involving
point p1 and p2 is then made subject to the following monotonicity
constraints: ∀p ∈ P | p < p1, gp ← min(gp, gp1),

∀p ∈ P | p > p2, gp ← max(gp, gp2),
∀p ∈ P | p1 < p < p2, gp ← min(gp2 ,max(gp, gp1)).

The application of such update rules is illustrated in Figure 1 (left
window) by the differences between the two dashed lines. The pro-
file with open, red ticks corresponds to a gain curve under adjust-
ment, without any constraints, whereas the dashed line with filled
blue ticks corresponds to the constrained gain curve which ensures
a monotonic increase. Notice that as a consequence of these rules,
while only two points p1 and p2 are freely adjusted at a time by the
participant, in reality other points get indirectly adjusted accordingly
when necessary. This is a key point to the efficiency of this method.

Energy conservation constraints: second, since otherwise par-
ticipants would be free to adjust the output level by vertically offset-
ting the gain curve, the curve is forced to a certain vertical offset.
Such a control of the output level is critical to a meaningful percep-
tual test, as for instance, some participants might otherwise uncon-
sciously try to lower artifacts below hearing threshold by reducing
gain values altogether. The resulting profile of the gain curve might
not be optimal anymore for more realistic (higher) output levels such
as in phone conversations. More generally, if we repeat an experi-
ment, nothing guaranties that the participant will aim twice at the
same output level. Hence for any given experimental condition, the
output level must be a fixed parameter, and the offset of the gain
curve must be adjusted accordingly. An important consequence is
that the curves obtained from all participant are then optimally valid
at the same output level and are thus comparable. The output level
is determined by the total output energy resulting from the filtering
process of equation (2), using equation (1):

Eout =

M∑
m=1

K∑
k=1

|X̂(k,m)|2 =

M∑
m=1

K∑
k=1

G(ξ(k,m))2|X(k,m)|2

+

M∑
m=1

K∑
k=1

G(ξ(k,m))2|D(k,m)|2

+

M∑
m=1

K∑
k=1

2G(ξ(k,m))2Re{X(k,m)D∗(k,m)},

where quantity
∑

m

∑
kG(ξ(k,m))2|X(k,m)|2 constitutes the use-

ful output energy. The output level is controlled via an overall gain
goffset correcting the offset of the gain curve. It is desirable to let
participants adjust independently the amount of residual noise in the
output, however choosing goffset so as to maintain constant the to-
tal output energy would mechanically result in reducing the propor-
tion of useful energy in the output when increasing residual noise.
The desired behavior is obtained by maintaining constant the use-
ful output energy only. Let us call Euseful the targeted useful energy
constant. G(ξ) linearly interpolates on a log-scale the N -point gain
function {(ξp, gp)}, with g1 and gN acting as minimum and max-
imum threshold values, respectively. Going a step further in the
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perception of the output signal, it is the loudness-weighted useful
energy which is maintained constant via goffset:

M∑
m=1

K∑
k=1

[W 40
k × |X(k,m)|]2[goffset ×G(ξ(k,m))]2 = Euseful,

where W 40
k are equal loudness contour weighting coefficients de-

fined according to ISO 226:2003 standard [18,19] at 40 phons. This
leads to:

goffset =

√√√√Euseful/

M∑
m=1

K∑
k=1

[W 40
k × |X(k,m)| ×G(ξ(k,m))]2, (3)

which is continuously updated over modifications of the profile of
the gain curve by the participant.

For computational reasons, however, SNR values ξ(k,m) are
rounded to nearest decibel to form a smaller set of non-repeated
integer values {Ξs, s = 1, ..., S}, where S depends on the former
distribution of SNR values. The total weighted useful energy Es

associated with each Ξs is computed and stored beforehand:

Es =

M∑
m=1

∑
k∈Ks

m

(W 40
k × |X(k,m)|)2,

where Ks
m are sets made of frequency bins such that [ξ(k,m)] = Ξs.

The overall gain is then real-time computed as (in decibels):

Goffset = 10 log10

Euseful∑S
s=1Es ×G(Ξs)2

, (4)

and finally added to each point on the gain curve to give the offset-
controlled gain curve illustrated in Figure 1 (left window) by the
solid line with pink filled ticks. Because in practice S is very much
smaller than K × M , the computational cost is reduced in equa-
tion (4) compared to that of equation (3).

2.3. Procedure

For each experimental condition, each participant optimizes a sepa-
rate gain curve for R realizations of noisy speech sharing the same
characteristics. Such repeated measures of the same experimental
condition reduce intra-listener measurement errors. Hence, the study
of C experimental conditions implies the adjustment by each partic-
ipant of R× C curves.

A single test is composed of a set of trials whose results produce
a single one of the R × C gain curves for one participant. Initially,
all curves are set to a flat profile (i.e., ∀p, q ∈ P, gp = gq). Each
trial involves the adjustment of a single pair of points (p1, p2) affect-
ing the profile of the curve. The set of trials involves a number of
adjustments Q to any one point made simultaneously with another
randomly chosen point. The order of each test is randomized while
ensuring that any one point can be presented again only when all
other points have been presented at least the same number of times.
Hence after each whole adjustment of the gain curve, the participant
has a new opportunity to correct the current value of each gain point,
until reaching Q adjustments for all points. Finally, the R× C tests
are randomly interleaved when presented to the given participant.

In addition, the initial position of the pointer in Figure 1 (right
window) is randomized in each trial and the association of each axis
in the triangle to gain points under adjustment is randomized; either
the horizontal and vertical axes indicate increasing values of gp1 and

gp2 respectively, or they indicate decreasing values of gp2 and gp1
respectively.

Such a robust experimental protocol is essential to give reliable
gain curve estimates unbiased by order effects or current gain op-
tima.

3. EXPERIMENTS

In the following we report an illustrative experiment which aims to
test the proposed framework for a specific experimental condition.
Results are compared to the noise suppression function of an ideal
Wiener filter.

Fifteen participants volunteered for this experiment (four fe-
male, eleven male, aged 24-32). While two of them are authors of
this paper, the remainder are naı̈ve listeners not familiar with signal
processing research. They received a 5-minute training session to
familiarize themselves with the GUI before conducting the exper-
iment. They were asked to select a pointer position in each trial
which corresponded to their preferred speech characteristics for a
supposed telephone conversation; they were not instructed to seek
a noise-free output, but were instead asked to judge for themselves
the trade-off between residual noise and speech distortion. Finally,
they were asked to spend approximately 30 seconds exploring the
triangular area in the GUI before making a final decision.

3.1. Setup

Experiments were conducted with three phonetically-balanced sen-
tences (Harvard sentences) [20] of about 2–3 s from a single male
speaker. Noise signals were one of three white noise realizations.
All signals were sampled at a rate of 32 kHz and analyzed using
50% overlapping Hann windows of 32 ms.

Both speech and noise signals were bandpass filtered (50Hz–
14kHz), then normalized to -26 dBov using the ‘14kBP’ filter and
speech voltmeter defined in ITU-T Recommendation G.191 [21].
Noise signals were normalized using the RMS long-term level,
whereas speech signals were normalized using the active speech
level. Three noisy speech stimuli were formed by corrupting each
of the three speech signals with a different noise signal. No scaling
gains were applied before summation, resulting in an average SNR
of 0 dB. The a priori SNR ξ(k,m) used in equation (2) was an exact
value, obtained directly from the noise and clean speech signals.

Each of the three noisy speech signals constitutes a repetition of
the same experimental condition (i.e., C = 1 and R = 3). There-
fore, each participant was required to adjust three gain curves. The
use of different speech utterances avoids the influence of phonetic
content. Each gain point was presented Q = 3 times within each
curve adjustment. Gain curves were composed of N = 8 points of
SNR values evenly spaced between -30 dB and 30 dB (inclusive).
Gain values were allowed to lie in the [-60 20] dB range and the
GUI pointing area had a precision of 1 dB on both axes. In total,
each participant was presented with C ×R× 1

2
N ×Q = 36 trials.

The perceptually-optimal gain curves derived through this above
experiment were to be compared to that of a conventional Wiener fil-
ter [3]. The Wiener filter is used widely for noise reduction, is also a
function of the a priori SNR and thus constitutes a meaningful com-
parison. To ensure such comparison was valid, the targeted constant
of useful energy used in equation (4) was the useful output energy
resulting from the Wiener filter H:

Euseful =

S∑
s=1

Es ×H(Ξs)2, with H(ξ) =
ξ

ξ + 1
.
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Fig. 2. Experimentally derived gain function with that of the Wiener
filter. Boxplot whiskers represent the lowest/highest datum still
within 1.5 times the interquartile range of the lower/upper quartile.
Mean values are calculated from all subjects and repetitions. The
upper table gives the statistical significance (after Bonferroni cor-
rection) of the deviation of the experimentally derived profile from
the Wiener filter. Significance codes: ***<.001, ** .001–.01, * .01–
.05.

All experiments were conducted in a quiet office. Stimuli were
presented diotically with headphones1 (Beyerdynamic DT 770 Pro)
at an average output level of 65 dB SPL at each ear for the -26 dBov
normalized clean speech stimulus alone.

3.2. Results and data analysis

Optimized gain values for each of the three speech utterances were
averaged for each participant to form a single dataset on which sta-
tistical analyses were performed [22]. A mean experimental gain
curve is also obtained by averaging gain values across the full num-
ber of participants, which reduces inter-listener measurement errors.
The data distribution is plotted in Figure 2 (boxplots), together with
the mean experimental curve (solid profile) and the Wiener filter for
comparison (dashed profile). The experimental curve is more ag-
gressive than the Wiener filter; it is mainly below, which indicates
more suppression. This deviation from the Wiener filter is statisti-
cally significant, as discussed below.

Histograms and QQ-plots (not illustrated here) showed that
data associated with gain points of -21, -13 and -4 dB SNR can
reasonably be considered as normally distributed, while remaining
data cannot. This non-normality of the data associated with extreme
SNR values can probably be explained by the constraints imposed
on the gain function (range and energy conservation). Therefore,
depending on the normality of the data associated with each gain
point, statistical significance of the deviation of the experimental
curve from the Wiener filter was tested using either a parametric test
(one-sample t-test), or a non-parametric test (one-sample Wilcoxon

1This corresponds to an headset phone situation. A monophonic presen-
tation (handset situation) might yield different results.

signed-rank test). p-values were corrected for multiple comparisons
using Bonferroni correction. They are reported in the upper table of
Figure 2 for each SNR value. As a result, the experimental mean
curve deviates significantly from the Wiener filter, except for SNR
values of -21 and 21, near to which the two curves intersect.

Outliers (i.e. markedly deviating values) were not removed be-
cause their origin is uncertain and cannot be proved to be measure-
ment errors. It might be due to the non-normality of data associated
with extreme SNR values (as highlighted above), but also to a mix-
ture of distributions.

The value of gain function at g1 where the SNR is equal to
ξ1 = −30 dB is somewhat peculiar. Below -30 dB SNR, certainly all
speech components are masked and only noise is perceived. There-
fore g1 acts as a limiter in the gain curve. It essentially controls the
amount of residual noise preferred when speech is absent. Informal
listening tests revealed that, for the present setup, residual noise is
barely audible when g1 = −40 dB. Among all the adjusted curves
from all participants (45 in total), only two preferred g1 ≥ −40 dB.
Besides, we noted that after averaging theR = 3 repetitions for each
participants, g1 is systematically below−40 dB. This observation in-
dicates the general preference to completely attenuate residual noise.
The question is open as to whether or not this choice is dependent
on the average SNR. Finally, informal listening of the noisy speech
signals shows less musical noise in the resulting signal processed
with the experimentally derived gain function than the Wiener gain
function, perhaps at the expense of speech intelligibility, which was
not a specific perceptual criterion in this experiment.

On average, each participant took about 25 minutes to complete
the whole experiment. The ability of the proposed framework to
show a statistically significant deviation with only 15 participants
in such a short period of time demonstrates its strength. Besides,
participants did not report any difficulty to understand the task or to
perform it. A demonstration video together with sound samples are
available on our website.2

4. CONCLUSION

This paper introduces an experimental framework for subjective
testing and the derivation of perceptually-optimal noise suppression
functions. We also report an example experiment using the pro-
posed approach for a specific experimental condition (male speech
corrupted with white noise). Listeners indicated a preferred noise
suppression function which deviates in a statistically significant
sense from an ideal Wiener filter. Thus, while a Wiener filter is op-
timal in the minimum mean-square-error sense, it is not necessarily
optimal in a perceptual sense. Further work is ongoing to extend
this study to assess the variability of the perceptually-optimal gain
function for different noise types and average SNRs. With a wide
range of results for different conditions, noise reduction algorithms
could be adapted to switch between specific gain curves to the most
appropriate for the prevailing noise conditions.

Carrying out such studies by means of conventional speech qual-
ity assessment methods (such as MOS [23] or MUSHRA [24] tests)
would demand the comparison of hundreds or thousands of prepro-
cessed speech signals or the restriction of considered gain profiles to
specific forms. In contrast, listeners can conduct a complete exper-
iment in less than 30 minutes using our approach and gain profiles
are free from any restrictive assumptions.

2http://audio.eurecom.fr/content/media
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