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ABSTRACT

The dynamics of the contour of the fundamental frequency (F0) of
singing voices in a chorus is analyzed from the view point of‘ en-
trainment’in singing behavior. The One-Mass-Two-Spring (OMTS)
coupled system is used as the mathematical model of the contour
of the F0 of singing voices that are concurrently singing the same
melody. Using this model, the characteristics of the F0 dynamics of
a voice singing in a chorus are parameterized by the mass, the co-
efficients of friction, and the spring factors of an OMTS system. It
is experimentally confirmed that a steepest decent method can esti-
mate the four model parameters, so that the model can generate the
F0 contour of a voice singing in a chorus with a less than 44.4 cents
of RMS error. Preliminary experiments also show that experienced
and novice singers can be correctly identified using the parameters
of our model, because their entrainment behaviors are significantly
different.

Index Terms— Singing voice, Fundamental frequency contour,
Chorus, Entrainment, Second-order linear system

1. INTRODUCTION

Unlike solo singing, singing behavior in a chorus is affected by
other singers, therefore, acoustical characteristics may differ from
that of solo singing. In [1], Rossing reported that the intensity of
singing-formants [2] are different in solo and chorus singing behav-
iors. This work also reported that singers adjust the power of their
voices to adapt to the loudness of the voices of the other singers.
These phenomena are the consequence of the fact that controlling
singing behavior becomes more difficult when the voices of other
singers’ voice are louder [3]. Other research has studied individual
preferences such as the Self-to-Other Ratio (SOR) in chorus singing
[4, 5]. Such differences in singing behavior are an important is-
sue for musical signal processing, particularly for generating natural
sounding chorus voices.

Such adaptive changes can be related to‘ entrainment’behav-
iors [6, 7, 8], which have been studied in relation to various aspects
of musical signal processing. Entrainment can be defined as changes
in behavior that results in movement towards synchronization of two
or more phenomena. In [9], the authors analyzed the interaction be-
tween the breathing timing of a performer and an audience. In [10],
synchrony of the playing rhythm of two piano players was analyzed
and modeled. However, there has been little research done on mod-
eling the singing behavior of choruses.

The purpose of this study is to build a generative model that
characterizes the singing behavior of a chorus in a mathematical
form. As the first step, a model of F0 dynamics, i.e., the dynamic
properties of the fundamental frequency of a voice singing in a cho-
rus is studied. The dynamic characteristics of the F0 contour of a

singing voice play a major role in musical expressions such as vi-
brato [11, 12] and overshoot [13]. It is also known that the dynam-
ics of the F0 affects the perceptual impression of listeners [14, 15].
Modeling the dynamics of the F0 is one of the most important issues
in understanding and characterizing singing behavior.

In a previous work [16], the authors studied the F0 dynamics of
singing voices from the viewpoint of the behavior of the F0 around
attractors, using the joint distribution of the F0 and its derivatives.
A Gaussian Mixture Model (GMM) was used to parameterize the
distribution:

(F0, Ḟ0) ∼
∑
i

ωiN (F0, Ḟ0; �μi, �σi
2) (1)

This work also makes use of the idea that the dynamics of the F0 of
a singing voice can be characterized by the trajectory of the F0 in the
phase plane around the attractor, but we extend it to chorus singing
using a more explicit mathematical form which models the physical
coupling system.

The mass-spring system is a simple model of second-order dy-
namics which has been used for modeling the contour of the F0 of
speech [17]. This model has also been used for the analysis of solo
singing voices [14, 18, 19, 20]. A mass-spring system which can
model the dynamics of the F0 of singing voices can be represented
by a second-order differential equation:

α
d2y(t)

dt2
+ β

dy(t)

dt
+ γy(t) = u(t) (2)

where u(t) is external force and y(t) is the displacement of the mass.
When we apply this equation to F0 dynamics, u(t) can represent
the contour of the‘ target ’F0 of the musical score and y(t) can
represent the contour of the sung F0. α, β and γ control the stability
and musical expression of the singing voice. The challenge faced in
this work is to extend this basic mass-spring system to the coupling
system, i.e., to the One-Mass-Two-Spring (OMTS) system, in order
to model the F0 of singing voices affected by entrainment.

The rest of this paper consists of four sections. In the next
section, data recording and analysis of F0 dynamics are discussed.
In that section, we compare the F0 frequencies in solo and chorus
singing voices and show that the F0 shifts toward that of accompany-
ing voices. In Section 3, we introduce the OMTS model to represent
the dynamics of the F0 of singing voices, and discuss the parameter
estimation methods of the model. Section 4 describes the experimen-
tal evaluations of the model, and we show that the proposed model
can generate the contour of the F0 of the voices singing in a chorus
with an RMS error rate of less than 44.4 cents. It is also shown that
experienced and the novice singers can be correctly identified using
the model parameters. Based on those results, the effectiveness of
the proposed model for characterizing individual singing behavior
in a chorus is clarified. Section 5 summarizes the paper.

7795978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



Table 1. Signal analysis conditions for F0 estimation.
Signal sampling freq. 16 kHz
Quantization bit rate 16 bits

window function Hanning window
F0 estimation window length 64 ms

window shift 10 ms
F0 contour smoothing 30 ms

Table 2. Average μ and standard deviation σ of d(t)
μ [cent] σ [cent]

Solo Chorus Solo Chorus
Novice 25.18 22.81 38.13 37.27
Experienced 12.72 7.93 34.93 33.08

2. MELODIC CONTOURS OF CHORAL SINGING

2.1. Data recording and analysis

In this paper, we discuss the entrainment of singing behavior, the
way in which voices singing the same melody adapt to and move
towards one another, from the viewpoint of the dynamics of the
F0, i.e., F0 entrainment. In order to analyze F0 entrainment, we
recorded the singing voices of six subjects singinqg in unison. Three
of six subjects were members of the university chorus club, and had
had 3-7 years of vocal training (Experienced). The other three had
no formal singing experience (Novice). The bass part of an old,
Japanese folk song,‘ Fu-ru-sa-to’(My Hometown), is used for the
recording. Each singer sang the song three times, under both the solo
and chorus conditions. First, the voices of the singers singing solo,
but with instrumental accompaniment, were recorded. Next, they
sang as a chorus, using a prerecorded vocal of an experienced singer
singing the same melody, as well as an instrumental accompaniment.
The prerecorded vocal was the singing voice of another experienced
subject, who sang along with a professional singer’s vocal and his
instrumental accompaniment. Both the accompanying vocal and the
instrumental accompaniment were heard through headphones. In to-
tal, six subjects (three experienced singers and three novices) each
sang the song six times, and songs which were sung with vocal ac-
companiment were used as samples to analyze for F0 entrainment.

2.2. Analysis of F0 entrainment

The contour of the F0 of each singing signal is extracted using
TANDEM-STRAIGHT [21]. The conditions for F0 extraction are
listed in Table 1. In this paper, F0 is represented in logarithmic fre-
quency units [cent], given by the following derivation:

f [cent] = 1200 log2
f [Hz]

440× 2
3
12
−5

(3)

A musical semitone is 100 in [cent]. In Figure 1, an example of
extracted F0 contours of solo and chorus singing are depicted in the
time and phase domains [16, 22]. In the figures, the F0contours of
the original musical score and that of the accompanying vocal, which
are denoted U and V , respectively, are also plotted. From the phase
plane representation, it can be observed that the center of the vortex,

10 10.5 11

4300

4500

4700

�

�

4300 4500 4700

-1000

0

1000

4300 4500 4700

-1000

0

1000

F
0
[cent]

L
o

g
a

r
i
t
h

m
i
c
 f
r
e

q
.
 [
c
e

n
t
]

time [sec]

F
0
[cent]

SOLO

ACC SCORECHORUS

ACCSOLO

CHORUS

ACC

Ḟ
0

Ḟ
0

100

-100

100

-100

Fig. 1. Melodic contours (top) and corresponding phase plane for
F0-Ḟ0 in solo and chorus singing (middle and bottom). During cho-
rus singing, the attractor position shifts closer to that of the accom-
panying vocal. Dotted line: original musical score (SCORE); solid
gray line: accompanying vocal (ACC); dashed line: solo singing
(SOLO); solid black line: chorus singing (CHORUS).

i.e., the attractor, shifts closer to that of the accompanying vocal in
the chorus signal. This shift can be regarded as a result of typical F0

entrainment in chorus singing. In order to discuss a change in F0 in
the presence of an accompanying vocal, we calculate the difference
between the F0 of the prerecorded accompanying vocal and the sung
vocal, under both the solo and chorus conditions:

d(t) = V (t)− F0(t) (4)

The average and the standard deviation of d(t) are listed in Table 2.
Statistical significance at a 1% critical rate in the difference between
solo and chorus versions for both mean and variance were confirmed
using a t-test and an f-test. From this result, it is clear that the ac-
companying vocal affects singing behavior. Since the variance of
d(t) decreases in chorus singing, we can conclude that the F0 of a
singer gets closer to that of the accompanying vocal statistically.

3. MODELING F0 DYNAMICS OF CHORUS SINGING

3.1. One-Mass-Two-Spring (OMTS) model of chorus singing

In the previous section, the statistical change in the height of the F0

in chorus singing as it gets closer to that of accompanying vocals is
confirmed. In this section, we further analyze the dynamic charac-
teristics of F0 behavior. For this purpose, we use the one-mass-two
spring (OMTS) system as a simple coupling system, as shown in

7796



f

k
V

k
U

Accompanying 

vocal ��V

Original musical 

score��U

m

VF −

0 0

FU −

V U

0

F

Singer’s pitch

Natural length of a spring Natural length of a spring

Fig. 2. One-Mass-Two-Spring (OMTS) model of chorus singing

Figure 3. The equation of motion in this system is given by:

m
d2F0

dt2
= −λ

dF0

dt
+ kU (U−F0) + kV (V −F0) (5)

where m represents the weight of the mass, λ is the coefficient of
friction and kU and kV are constants of springs connected to the
vibrators corresponding to the F0 contour of the original score and
that of the accompanying vocal, respectively. A new term, express-
ing the influence of the accompanying vocal, kV (V − F0), is added
to equation (2), the model representing the F0 dynamics of the solo
singing voice. The stiffness of each of the two springs represents the
strength of the coupling with the musical score and the accompany-
ing vocal, respectively. In other words, the larger kV is, the more
chorus singing is affected by the accompanying vocal. Therefore,
a set of model parameters, Θ = {m,λ, kU , kV }, characterizes the
behavior of F0 entrainment in chorus singing.

3.2. Estimating the OMTS parameters

As one of several methods for identifying the model parameters for
the observed signals, we implemented the steepest descent method
as follows. The square error given by equation (6) is used for the
objective function, i.e., J(Θ):

J(Θ) =
1

N

N∑
n=1

(F0(tn)− y(tn,Θ))2 (6)

where y(t) is a function which is given by solving equation (5). The
repeated update of Θ can be represented by:

Θ(τ+1) = Θ(τ) − η
∂J(Θ(τ))

∂Θ
(7)

where

∂J(Θ)

∂Θ
= − 2

N

N∑
n=1

(F0(tn)− y(tn,Θ))
∂y(tn,Θ)

∂Θ
(8)

where η is a vector comprised of a learning rate parameter for each
model parameter. The derivative of the error function with respect to
Θ can be calculated by solving equation (5) under the given param-
eter set, Θ. Equation (5) can be solved for the given parameters by
Fourier series expansion and Laplace transform as follows.

First, rewrite equation (5) in the following form:

ÿ(t) + αẏ(t) + (βU + βV ) y(t) = βUU(t) + βV V (t) (9)

where α, βU , and βV are the normalized values of the coefficient
of friction and spring factors by the mass. By expanding U(t) and
V (t) in Fourier series,

U(t) = u0 +

∞∑
k=1

(u1k cos kω0t+ u2k sin kω0t) (10)

V (t) = v0 +

∞∑
k=1

(v1k cos kω0t+ v2k sin kω0t) (11)

and substituting to equation (9), we obtain the differential equation,

ÿ(t) + αẏ(t) + (βU + βV ) y(t)

= c0 +
∞∑

k=1

(c1k cos kω0t+ c2k sin kω0t) , (12)

where c·k are the weighting sums of the Fourier coefficients, i.e.,
c·k = βUu·k + βV v·k. The solution of equation (12) is given as:

y(t) = L−1 [{(s+ α)y(0) + ẏ(0) +R(s)}Q(s)] (13)

where R(s) is the Laplace transform of the right hand side of equa-
tion (12) and Q(s) is given by:

Q(s) =
1

s2 + αs+ (βV + βU )
. (14)

The solution of the equation (12) is finally given by the following
equation:

y(t) =
1

ξ1 − ξ2

{
(y(0)ξ1 + ẏ(0)− αy(0))eξ1t

−(y(0)ξ2 + ẏ(0)− αy(0))eξ2t
}

+
c0
ξ1ξ2

+
c0e

ξ1t

(ξ1 − ξ2)ξ1
+

c0e
ξ2t

(ξ2 − ξ1)ξ2

+
∞∑

k=1

{
(ξ1c1k + kω0c2k)e

ξ1t

(k2ω2
0 + ξ21)(ξ1 − ξ2)

+
(ξ2c1k + kω0c2k)e

ξ2t

(k2ω2
0 + ξ22)(ξ2 − ξ1)

+
(ξ1ξ2 − k2ω2

0)c1k + kω0(ξ1 + ξ2)c2k
(k2ω2

0 + ξ21)(k
2ω2

0 + ξ22)
cos kω0t

− (k2ω2
0 − ξ1ξ2)c2k + kω0(ξ1 + ξ2)c1k
(k2ω2

0 + ξ21)(k
2ω2

0 + ξ22)
sin kω0t

}

(15)

where ξ· is given by:

ξ1,2 =
α±√

α2 − 4(βU + βV )

2
.

By repeatedly the updating Θ we can finally reach the optimal es-
timate of the parameters for the given signals, i.e., F0, U , and V .
Θ was updated 100 times based on the steepest descent method, be-
cause it was confirmed experimentally that Θ converges after about
30 iterations.

4. EXPERIMENTAL EVALUATION

4.1. Parameter Estimation

In order to test the OMTS model’s ability to characterize individuals
in entrainment during chorus singing, we evaluated the model ex-
perimentally. The test data consisted of the first 17 seconds of the
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Fig. 3. An example of the actually sung signal F0(t) and F0 con-
tour y(t) derived from the estimated model parameters. Dotted line:
original musical score; solid gray line: F0(t); solid black line: y(t).

Table 3. Estimated model parameters and RMSE

α βV βU
kV

kU + kV

RMSE
[cent]

Novice 1.53 1.27 1.21 0.51 44.4
Experienced 1.41 1.29 1.37 0.48 39.4

Note: RMSE is calculated between the sung signal and the signal
derived from the estimated model parameters. kV /(kU + kV ) is the
ratio of the spring constant calculated using βU , βV and represents
the adaptation ratio to the accompanying vocal.

contour of the F0 as described in Section 2.1. The number of iter-
ations in the steepest decent algorithm is fixed at 100. An example
of the F0 contour derived from the estimated model parameters is
shown in Figure 3, together with that of the signal actual sung. For
this evaluation, the model parameters were estimated using the three
recordings of the chorus versions sung by each subject. Two record-
ings were used to train the model and the other one was used for
evaluation (trial-open, song-close, and singer-close paradigm).

The averaged values of the estimated model parameters of ex-
perienced and novice subjects are listed in Table 3. Each average
is calculated using nine signals sung by three subjects. We can see
that the spring factor which connects the mass to the source of vibra-
tion in our model (corresponding the accompanying vocal) is higher
in novice subjects than in experienced subjects. Although statistical
significance is not tested, this result suggests that novice subjects are
more sensitive to the accompanying vocal than experienced singers.
It is also suggested, by the difference in the coefficient of friction, α,
that experienced subjects use more dynamic expression than novice
subjects.

4.2. Singer Discrimination

Singing behavior in a chorus differs between subjects, and it may be
possible to characterize the differences using OTMS model parame-
ters. In this section, we discuss the individuality of singing behavior
by evaluating the root mean square error (RMSE) of the F0 contour
generated using the OTMS model with respect to the observed F0

signal. Since we have three signals for each singer, we used a three-
fold-trial paradigm where the model parameters were estimated us-
ing two signals and the remaining signal is used for calculating the
RMSE value.

The results are listed in Table 4. The OTMS model that gave the

Table 4. Calculation results of RMSE
No-A No-B No-C Ex-A Ex-B Ex-C

No-A 69.26 71.01 69.97 70.90 69.69 69.47
No-B 69.88 68.53 68.58 74.15 72.07 71.46
No-C 51.55 51.08 51.62 56.05 53.61 52.78
Ex-A 50.46 56.22 54.05 48.55 48.94 49.15
Ex-B 53.20 57.96 55.64 53.55 52.30 52.27
Ex-C 46.99 51.66 49.04 48.05 46.39 46.36

Note:“No”and“Ex”represent Novice and Experienced singers,
respectively. Horizontal and vertical labels are the subject IDs of
the models and test signals, respectively. The lowest error value is
expected to occur when a singer’s test signal is compared to the same
singer’s model.

minimum RMSE is highlighted using bold fonts. As shown in the
table, four out of six subjects had the minimum RMSE to our model
as compared to the individual model. Even in Novice C (No-C) and
Experienced B (Ex-B), whose smallest RMSE are not achieved by
their individual models, a relatively lower RMSE value is achieved
by the individual models. It is also confirmed that experienced and
novice subjects can be correctly identified based on the RMSE. In
addition, we confirmed statistical significance in the difference in
the mean between experienced and novice subjects of the model at
a 5% critical rate using a t-test. From these results, it is confirmed
that the OMTS model can properly characterize individual singers
by analyzing F0 entrainment during chorus singing.

5. SUMMARY AND FUTURE WORK

In this paper, we proposed a One-Mass-Two-Spring model for de-
scribing the F0 entrainment of chorus singing behavior. We intro-
duced a steepest decent method for estimating the model parameters
from the observed signals. Four out of six subjects were correctly
identified using the model parameters. Experienced and novice sub-
jects were also correctly identified. Therefore, the effectiveness
of the model as a parametric representation of F0 entrainment is
strongly suggested.

However, future work is needed for applying the model to wider
applications. First of all, we need to confirm the effectiveness of the
model under bilateral interaction, because, in this study, experimen-
tal conditions were limited to cases where each subject sang along
with a‘ pre-recorded’ accompanying vocal. In order to evaluate the
general effectiveness of the model, we also need to extend the size
of the experiments, in regards to both the number of subjects and the
number of songs.
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