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ABSTRACT

Cochlear implants (CIs) require efficient speech processing to max-
imize information transfer to the brain, especially in noise. Since
speech information in CI is coded in the waveform envelope which
is non-negative and is highly correlated to firing of auditory neurons,
a novel CI processing strategy is proposed in which sparse constraint
non-negative matrix factorization (NMF) is applied to the envelope
matrix of 22 frequency channels in order to improve the CI perfor-
mance in noisy environments. The proposed strategy is evaluated by
subjective speech reception threshold (SRT) experiments and sub-
jective quality rating tests at three SNRs. Compared to the default
commercially available CI processing strategy, the advanced com-
bination encoder (ACE), the NMF algorithm significantly enhanced
speech intelligibility and improved speech quality in the 0 dB and
5 dB for normal hearing subjects with vocoded speech, but not in the
10 dB.

Index Terms— Cochlear implants, non-negative matrix factor-
ization, speech enhancement, vocoder.

1. INTRODUCTION

Non-negative matrix factorization (NMF) [1],[2] has recently attract-
ed interest at the intersection of many scientific and engineering dis-
ciplines, such as image processing, speech processing and pattern
classification [3, 4, 5, 6, 7, 8, 9]. NMF is useful for transforming
high dimensional data sets into a lower dimensional space [5]. More-
over, instead of developing holistic re-presentations, NMF usually
conducts parts-based decomposition and reconstruction using non-
negativity constraints [1].

Cochlear implants (CIs) are electrical devices that help to restore
hearing for the profoundly deaf. The main principle of CIs is to s-
timulate the auditory nerve via electrodes surgically inserted into the
inner ear. With the development of new speech processors and algo-
rithms, CI users benefit more and more from CIs [10], however, the
average speech perception performance of CI users decreased dra-
matically in the presence of background noise. One potential reason
is the limited number of channels in CIs. Most CI strategies only use
the envelope information to generate the electrical pulse and drive
the CI electrical stimuli. Motivated by the non-negativity of the en-
velopes in CI channels and different NMF algorithms that have been
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developed to extract the desired signal from the noisy observation-
s, this paper tries to explore whether a basic NMF can be used to
improve the performance of CI users in noisy environments.

Basically, given an input non-negative matrix, NMF is a method
to factorize it into two non-negative matrices. Depending on the
application, the estimated non-negative factors may have different
interpretations. In speech processing, the input matrix is usually the
magnitude or the power spectrogram of the observed signal, where
the spectra are stored column-wise in it. In our application, the in-
put is a matrix that consists of the envelopes of CI channels, named
envelopegram here. Considering the computation complexity of N-
MF and an envisaged real-time implementation in the future, a basic
NMF method with a sparse constraint [11] is applied.

After a brief introduction about sparse constraint NMF in Sec-
tion 2, Section 3 presents an example to show the applicability of
the NMF on the envelopegram and the potential to be used in CI
strategies. The sparse NMF speech processing strategy is adapted
to CI in section 4. Finally, to further evaluate the proposed strate-
gies, the results of subjective speech reception threshold (SRT) and
quality experiments in different signal-to-noise ratios (SNRs) at two
sparsity levels are presented in Section 5.

2. SPARSE CONSTRAINT NMF

Given a non-negative matrix Z, NMF is a method to factorize Z in-
to the NMF basis matrix W and component matrix H so that Z ≈
WH. To do the factorization, a cost functionD(Z||WH) is usually
defined and minimized. There are several possibilities for defining
the cost function and various procedures for performing the conse-
quence minimization [12, 13, 14]. In this paper an EUC-NMF, where
the square Euclidean distance DEuc(Z||WH) = 1

2
‖Z−WH‖22

is used as the cost function, which is equivalent to Maximum Likeli-
hood (ML) estimation of W and H in additive i.i.d. Gaussian noise.
Since the basic NMF allows a large degree of freedom, differen-
t types of regularizations have been used in the literature to derive
meaningful factorizations for a specific application. In this paper,
the EUC-NMF will be combined with a L1 - regularized least square
sparseness penalty function through a least absolute shrinkage and s-
election operator (LASSO) framework.

In our application, Z is the envelope of CI-channels in multiple
frequency bands. NMF is applied to factorize the envelope matrix
into two matrices consisting of NMF basis vectors W and the NMF
components H that represents the activity of each basis vector over
time. As standard NMF usually provides sparseness of its compo-
nents to certain degree, an additional sparseness constraint is applied
to explicitly control the sparsity of the NMF component matrix H.
In this paper, the L1 norm of H is used as the sparsity measure and
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the optimization algorithm proposed by Hoyer [11], [15] is applied
to obtain non-negative matrices W and H. In future it might be
preferable to optimize the sparseness for each individual CI user.

2.1. Problem Formulation

Let Z denote anN×M envelope matrix of one analysis block where
N andM indicate the number of channels and the number of frames,
respectively. Given the non-negative envelope matrix Z, we aim to
obtain the basis matrix W and component matrix H such that

D(Z||WH) = 1
2
‖Z−WH‖22 + λg(H) (1)

is minimized, under the constraints ∀i,j,k : wik ≥ 0, hkj ≥ 0,

λ ≥ 0, where g(H) =
K∑

k=1

M∑
j=1

hkj .

The parameter λ in equation (1) control the sparsity level which
handles the compromise between the NMF approximation and the
sparsity.

2.2. Algorithm Description

As proposed by Hoyer [11], [15], an iterative algorithm is imple-
mented to minimize the cost function in (1), in which the basis ma-
trix W and the component matrix H are updated by gradient descent
and multiplicative update rules respectively. The whole algorithm
can be described as follows:

1. Initialize basis matrix W and component matrix H with ran-
dom positive matrices W0 and H0, and rescale each column of W0

to unit norm.
2. Iterate until convergence:

a. W← max(W − µ(WH− Z)HT , 0)
b. Rescale each column of W to unit norm, i.e., wk =

wk

/√
N∑
i=1

w2
ik

c. H← H(WTZ)
/
(WTWH+ λ)

The variable µ = 1 is the step size.

3. NMF ON THE ENVELOPE DOMAIN

To show the applicability of NMF in the envelope domain, in this
section, we set λ = 0. Four single words (BIN, PIN, DIN, TIN) from
20 sets vocabulary of 80 words [16] were used. This material was
used in a variant of the four-alternative auditory feature test (FAAF)
[17]. Figure 1 shows the waveforms of four clean words in one set
(BIN, PIN, DIN, TIN).

3.1. CI Envelope Extraction

The envelope extraction procedure is similar to the standard ad-
vanced combination encoder (ACE) strategy [18]. First, a pre-
emphasis filter attenuates low frequencies and amplifies high fre-
quencies, to compensate for the −6 dB/octave natural slope in the
long term speech spectrum; Second, short time fourier transfer
(STFT) is applied to the input speech signal to obtain the spectro-
gram; Then the 22 - channel envelopegram is extracted by summing
the power at frequency bins within each band. Figure 2 shows
the corresponding envelopes of 22 channels, the envelopegram.
The STFT frame length is 128 samples with 75% overlap at sam-
pling rate fs = 16 KHz. The x-axis is the time frame bins,
T ≈ L/(0.25 ∗ 128) is the total short-time frame number for each
individual word, where L is the length of the corresponding word in
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Fig. 1. Waveforms of 4 example sounds (BIN, PIN, DIN, TIN) in
the time domain.
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Fig. 2. Envelopegram of the corresponding CI envelopes from the 4
sounds shown in Fig. 1.

samples. Since the envelopes are non-negative, NMF should work
properly for the envelopegram.

3.2. NMF Analysis on the Envelopegram

For the purpose of demonstration, NMF was applied to the whole
envelopegram with dimension of 22*T for each word individually
and the decomposition dimension was set to K = 5. Figure 3 (a)
shows the component matrix, which determines the activity of dif-
ferent basis vectors over time. Figure 3 (b) shows the basis vectors
for different words. Note that although the basis vectors are different
for each word, the component matrices reflect similar patterns along
time dimension for all the words, but not necessarily in the same
order of basis number. In the following subsection, the effect of the
number of the components in the reconstruction of the envelopegram
will be further investigated.

3.3. Reconstructed Envelope

In this study the envelopegram is factorized by the NMF into the ba-
sis and component matrices where some components correspond to
the speech source and others correspond to the noise source. The
application of sparse NMF can be interpreted by assuming that the
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(a) Component matrices (H)
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(b) Basis matrices (W)

Fig. 3. The component matrices (a) and the basis matrices (b) of the
example words ’bin’, ’pin’, ’din’ and ’tin’.

smaller NMF components correspond either to the noise basis vec-
tors, or they do not contribute significantly to the intelligibility of
speech. By normalizing each basis vector to unit norm and by apply-
ing sparseness constraint to the factorization, the small NMF com-
ponents will be removed and hence a more sparse signal will be ob-
tained while effectively reducing redundancy and hence performing
noise reduction.

Figure 4 shows the reconstruction of the envelopes with differ-
ent components for the word ”DIN”. This analysis illustrates that:
1) the representation in the NMF domain is more sparse than in the
time domain, indicating that NMF can reconstruct speech with re-
duced information by choosing only few components. In this exam-
ple, components 1 and 4 alone can reconstruct most of the envelope
information (see Fig. 4 top left panel). This reflects that speech has a
high degree of redundancy and only few components are necessary
to reconstruct an intelligible speech signal [19], [20]. In this pa-
per, the sparsity and the amount of information in the reconstructed
signal is controlled by λ. 2) The inherent correlation in the speech
signal is conserved in the component matrix after applying NMF. As
illustrated in the top-left panel of Fig. 4 and in the Fig. 3 (a), the N-
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Fig. 4. An example of the reconstruction with different components.

MF components (the activity of basis vectors) tend to be continuous
over time; in other words, if a basis vector is active (meaning that its
corresponding coefficient is relatively large in the component ma-
trix) at a specific time-frame, it will often remain active for several
time-frames. This might be used as additional factor for improving
iteration speed and speech reconstruction in future.

4. SPARSE NMF STRATEGY FOR CIS

Our former researches have shown that some statistic based speech
processing algorithms can improve the speech intelligibility for CI
users by reducing the redundancy of noisy speech [21], [22], [23].
The proposed algorithm can therefore possibly enhance the speech
intelligibility by increasing the sparseness of the reconstructed sig-
nal. In order to adapt this algorithms to CI implementation, this part
will introduce the sparse NMF strategy for CIs aimed to further im-
prove the performance of CI users in noisy environments.

Considering the real-time implementation for CI products in the
future, the sparse NMF algorithm is applied to the envelopegram
with a block by block batch processing, by buffering a certain num-
ber of continuous frames in each channel. Suppose z(t) is the mea-
sured noisy speech signal, zi,j is the envelope-time bin in the ith

channel of the jth frame, which is calculated according to the ACE
strategy [18]. Z is an N ×M envelopegram, where each column is
the N = 22 channel envelope bin, M = 10 is the number of frames
used in each analysis block, which is the same as the one used in
[22] in order to provide the same input signal in each analysis block
and short enough to allow real-time implementation. The processed
envelopes are reconstructed from the modified sparse NMF compo-
nents. At last, appropriate channels are selected for stimulation in a
real CI or to obtain a vocoder simulation that can be tested in exper-
iments with normal hearing (NH) listeners. The vocoded signals are
produced by summating noise modulated corresponding envelopes
after channel selection [24].

In this paper, the buffer length is set to M = 10; therefore, the
systematic delay caused by buffering (considering a frame length of
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8 ms, and 75 % overlap) is around 20 ms. The total delay imposed by
the algorithm is equal to the sum of the buffering time and process
time for each block. The sparsity constraint parameter λ in equa-
tion (1) is decided by a two-step sparsity level selection procedure
described in [25]. The algorithm has been implemented and will be
tested on the same real-time CI research platform as in [26] which
was provided by CochlearTM in the future.

5. SUBJECTIVE EXPERIMENTS

As stated in [25], the optimized λ for better SRT probably lies be-
tween 0.08 and 0.13. Aimed to compare the sparse NMF strategies
within this λ range to the ACE strategy, both the intelligibility and
quality experiments were carried out with noise vocoded speech and
NH participants in this section. All experiments were performed in
a sound-isolated room with the sounds presented bi-aurally through
a Sennheiser HDA 200 headphone with a Creek OBH-21SE head-
phone amplifier. Bamford-Kowal-Bench (BKB) sentences [27] were
used in all the subjective experiments. BKB sentence lists are s-
tandard British speech materials with 21 lists. Each list contains 50
keywords in 16 sentences. Babble noise was added to the speech ma-
terial at different long-term signal-to-noise ratio (SNR). All partic-
ipants were native English speakers with no previous experience of
BKB sentence lists. All experiments were approved by the Human
Experimentation Safety and Ethics Committee, Institute of Sound
and Vibration Research, University of Southampton, UK.

5.1. SRT Experiment

Ten NH (6 males, 4 females, and aged 18-26) were recruited. The
SRT experiment was used to test the speech perception ability [28].
The SNR required for 70.7% correct recognition in each condition
was found with a two-up one-down adaptive procedure. A sentence
was classified to be correctly identified when at least two keywords
were correctly repeated [16]. The SNR level varied adaptively with
a 1 dB step size. The ACE strategy and three NMF strategies with d-
ifferent sparsity conditions (λ = 0.08 (’NMF008’), 0.10 (’NMF010’)
and 0.13 (’NMF013’)) were tested.

On average, there was a 0.74 dB improvement for NMF010
and a 0.92 dB improvement for NMF013 compared to the ACE s-
trategy. A one-way repeated-measures ANOVA with LSD post-hoc
test shows that the differences between the strategies are significant
[F(3, 27) = 7.13, p < 0.05]. The following comparisons are signif-
icantly different: NMF010 < ACE (p = 0.037), NMF013 < ACE
(p = 0.012), NMF010 < NMF008 (p = 0.003) and NMF013 <
NMF008 (p = 0.006).

5.2. Subjective Quality Experiments

To further evaluate the sparse NMF strategies with selected sparsi-
ty constraint parameters λ = 0.1 and 0.13 chosen in [25], subjective
quality experiments in different SNRs were performed to compare
the performance of the NMF010 and NMF013 sparse strategies with

Table 1. The Paired-compared win/loss number
Strategy ACE NMF008 NMF010
NMF008 1:9
NMF010 8:2 9:1
NMF013 9:1 8:1, 1:1 5:5

the ACE strategy. The aim of this experiment was to give an indica-
tion whether the sparse NMF strategy can improve the quality of the
noisy speech and which sparsity level was preferred. Five NH sub-
jects were recruited (all male, aged between 20 to 26 years) in this
experiment. Three conditions were tested in Babble noise at three
different SNRs (0, 5 and 10 dB). Four speech conditions were also
compared, involving a) ACE processed vocoded clean speech (’ACE
clean’), b) ACE processed vocoded noisy speech (’ACE noisy’), c)
and d) sparse NMF processed noisy speech with λ = 0.1 and 0.13
respectively (’NMF010’, ’NMF013’). Each speech group consisted
of the same seven individual BKB sentences with the corresponding
SNR and the named processing strategies, which were vocoded and
concatenated into one long presentation as testing speech.

A multi-comparison preference rating test was introduced to e-
valuate the quality of the speech, in which the global speech quality
is evaluated for each session, i.e., each SNR (0, 5 and 10 dB). Partic-
ipants were asked to rate the presentations by giving a score between
0 and 100 according to their perceived general quality (higher = bet-
ter). The participants were allowed to repeat the speech stimuli as
often as they wanted and they could give identical scores when un-
able to rate differently.

The experiment shows that all subjects rate the ACE clean
speech highest quality. More interestingly, all subjects prefer N-
MF processed speech to the corresponding ACE noisy speech in
conditions 0 and 5 dB, and three out of five prefer at 10 dB SNR.
A one-way repeated-measure ANOVA with Fisher’s LSD posthoc
test shows that the effect of different strategies on the quality per-
formance are significant [F(3, 12) = 38.3, p < 0.001]. Both sparse
NMF010 and NMF013 significantly improved the quality of vocod-
ed speech compare to the noisy ACE strategy for 0 and 5 dB (p <
0.05), but there is no statistically significant improvement for 10 dB.
There is no significant difference between NMF010 and NMF013
for 0 and 10 dB, while NMF010 significantly (p< 0.05) outperforms
NMF013 at 5 dB.

These results indicate that the sparse NMF speech processing
strategy is able to improve both speech intelligibility and quality for
vocoded speech. Further evaluation in CI users is necessary in the
future, especially when there are more disagreement in the literature
on whether the vocoder simulation can be used to predict the quality
performance of CI users or not.

6. CONCLUSIONS

A sparse constraint NMF is applied to the envelopes of CI-channels
in order to improve the performance of CIs in noisy environment, in
which the envelopegram is sparsified in the NMF domain, and only
a few basis vectors are active for each time-frame. This algorithm
is extended to CI implementation with a block by block batch pro-
cessing technique for real-time implementation. Subjective listening
experiments demonstrated that the proposed sparse NMF strategy
can outperform the existing ACE strategy when using appropriate
sparsity, especially at low SNRs. This is evident for both speech
intelligibility and quality, at least as far as can be gauged from N-
H listeners and noise vocoder CI simulation. Speech intelligibility
in the sparse NMF strategy benefits from noise reduction more than
ACE, because only the key parts of the signal are chosen for recon-
struction. However, at high SNRs, speech quality becomes more
important and distortion caused by over sparsification may increase
listening effort. The sparse NMF strategy shows promise for achiev-
ing better speech perception for CI users, especially the intelligi-
bility. Further experiments with CI users and the evaluation of our
real-time implementation are necessary.
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