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ABSTRACT 
 
Speech sounds are the result of coordinated movements of 
individual articulators. Understanding each articulator’s role in 
speech is fundamental not only for understanding how speech is 
produced, but also for optimizing speech assessments and 
treatments. In this paper, we studied the individual contributions of 
six articulators, tongue tip, tongue blade, tongue body front, 
tongue body back, upper lip, and lower lip to phoneme 
classification. A total of 3,838 vowel and consonant production 
samples were collected from eleven native English speakers. The 
results of speech movement classification using a support vector 
machine indicated that the tongue encoded significantly more 
information than lips, and that the tongue tip may be the most 
important single articulator among all of the six for phoneme 
production. Furthermore, our results suggested that the tracking of 
four articulators (i.e., tongue tip, tongue body back, upper lip, and 
lower lip) may be sufficient for distinguishing major English 
phonemes based on articulatory movements. 
 

Index Terms— Speech production, articulation, support 
vector machine, silent speech recognition 
 

1. INTRODUCTION 
 
Although most talkers produce speech effortlessly, the underlying 
coordination required to produce fluent speech is very complex 
involving dozens of muscles spanning the diaphragm to the lips. 
How exactly speech is produced is still poorly understood [1]. One 
major barrier to speech production research has been the logistic 
difficulty of tongue motion data collection [2]. Fortunately, recent 
advances in electromagnetic tracking devices have made speech 
production data collection more feasible. Tongue tracking using 
electromagnetic technology is accomplished through the placement 
of small sensors (or pellets) on the surface of the tongue. In prior 
work, the number of tongue sensors and their locations has been 
justified based on long-standing assumptions about tongue 
movement patterns, or the specific purpose of the study. It is, 
however, not clear how many sensors are adequate for a particular 
study because the individual articulator’s contribution to the 
articulatory distinctiveness of phoneme production has rarely been 
studied.  

Determining a minimal set of tongue sensors is important for 
optimizing (1) silent speech interface technologies designed to 
assist individuals with laryngectomy (surgical removal of larynx 

due to treatment of cancer) or severely impaired voice and speech 
[3, 4, 5, 6], (2) speech recognition with articulatory information [7, 
8], and (3) treatments that provide a real-time visual feedback of 
speech movements [9, 10]. In addition, the use of more sensors 
than is necessary comes at a cost for both investigators and 
subjects; the procedure for attaching sensors to the tongue is time 
intensive and can cause discomfort and therefore, may limit the 
scope of research on persons with speech impairment. 

In this research, we examined the individual contribution of 
six articulation points (articulators for the rest of the paper), tongue 
tip, tongue blade, tongue body front, tongue body back, upper lip, 
and lower lip to the articulatory distinctiveness of eight English 
vowels and eleven English consonants. Support vector machines 
(SVM, [11]) are a widely used machine learning classifier, which 
have been successfully used for classification of phonemes based 
on articulatory movements (e.g., [2, 12]).  A SVM was used to 
classify vowel and consonant samples based on the movement of 
individual and groups of articulators. The resulting classification 
accuracies were used to address the following experimental 
questions: 

Q1.Which articulator contributes most to vowel production? 
Q2.Which articulator contributes most to consonant 

production? 
Q3.Is there a minimum set of articulators that can match the 

accuracy level achieved using all six articulators? 
 

2. DATA COLLECTION 
 
2.1. Participants 
 
Eleven native American English talkers participated in this study. 
No talker had positive history of speech or hearing problems. Each 
talker participated in one data collection session. Ten of them 
participated in a session for both vowels and consonants; the other 
one participated in a session for vowels only. 
 
2.2. Stimuli 
 
Eight major English vowels in consonant-vowel-consonant (CVC) 
form, //, //, //, //, //, //, //, //, and 
eleven major English consonants in vowel-consonant-vowel 
(VCV) form, //, //, //, //, //, //, //, 
//, //, //, //, were used as stimuli.  

The eight vowels are representative of the full English vowel 
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set and were chosen because they sufficiently circumscribe the 
boundaries of articulatory vowel space [2, 13]. Each vowel was 
embedded in a consonant vowel consonant context. The pre and 
post vowel consonant was always //. This bilabial was selected 
because it is easy to parse and has minimum co-articulation effect 
on the vowel [2].  

The eleven consonants were selected because they represent 
the primary places and manners of articulation of English 
consonants. Each consonant was embedded into the // context 
because this vowel is known to induce larger tongue movements 
than other vowels [2]. 
 
2.3. Procedure 
 
The Electromagnetic Articulograph (EMA, Model: AG500; 
Carstens Medizintechnik, Inc., Germany) was used to register 3-D 
movements of the tongue, lip, and jaw during speech. The spatial 
accuracy of motion tracking using EMA (AG500) was 0.5 mm 
[14]. EMA registers movements by establishing a calibrated 
electromagnetic field that can be used to track the movements of 
small sensors within the field. The center of the magnetic field is 
the origin (zero point) of the EMA coordinate system. 

Participants were seated with their head within the calibrated 
magnetic field. The sensors were attached to the surface of each 
tongue and jaw articulator using dental glue (PeriAcryl Oral Tissue 
Adhesive) and others using double-sided tape.   

Figure 1 shows the placement of the twelve sensors attached 
to a participant’s head, face, and tongue [2]. Three of the sensors 
were attached to a pair of plastic glasses. HC (Head Center) was 
on the bridge of the glasses; HL (Head Left) and HR (Head Right) 
were on the left and right outside edge of each lens, respectively. 
The movements of HC, HL, and HR sensors were used to calculate 
the movements of other articulators independent of the head [15]. 
Lip movements were captured by attaching two sensors to the 
vermilion borders of the upper (UL) and lower (LL) lips at 
midline. Four sensors - T1 (Tongue Tip), T2 (Tongue Blade), T3 
(Tongue Body Front) and T4 (Tongue Body Back) - were attached 
approximately 10 mm from each other at the midline of the tongue 
[2, 15, 16]. The movements of three jaw sensors, JL (Jaw Left), JR 
(Jaw Right), and JC (Jaw Center), were recorded for future use, 
thus not analyzed in this study. 

All stimuli were presented on a large computer screen in front 
of the participants and pre-recorded sounds were played to help the 
participants to pronounce the stimuli correctly. The stimuli were 
presented in the order as listed in Section 2.2. Participants were 
asked to repeat what they heard and to put stress on the middle 
phoneme (rather than the carriers) at their habitually comfortable 
speaking rate and loudness. Participants were also asked to rest 
shortly (about 0.5 second) between each CVC or VCV production 
to minimize the co-articulation effect [2]. This rest interval also 
facilitated segmenting the stimuli prior to analysis. 
Mispronunciations were rare, but were identified by the 
investigator and excluded from the data analysis. 

 All participants repeated the phoneme sequences multiple 
times. The sequences were then segmented into individual 
phoneme utterances offline, based on synchronously recorded 
acoustic data. On average, 21 valid vowel samples were collected 
from each participant with the number of samples for each vowel 
varying from 16 to 24 per participant. In total, 1704 vowel samples 
with 213 samples for each vowel were obtained. The average 
number of valid consonant samples collected from each participant 

was 19 varying from 12 to 24 per participant. In total, 2134 
consonants samples (with 194 samples for each consonant) were 
obtained. In all, 3,838 vowel and consonant samples were 
collected and used for analysis. 
 

 
Figure 1: Sensor positions in data collection and the orientation 
of the Cartesian coordinate system. Sensor labels are described 
in text. 

 
2.4. Data preprocessing 
 
Prior to analysis, the translational and rotational components of 
head movement were subtracted from the tongue and lip 
movements. The resulting head-independent tongue and lower lip 
sensor positions included the movement from the jaw. The 
orientation of the derived 3-D Cartesian coordinate system is 
displayed in Figure 1. Because the movements for the simple 
vowels and consonants contain only very low frequency 
components, a low pass filter of 10 Hz was applied to the 
movement traces prior to analysis [15]. 

Only y (vertical) and z (anterior-posterior) coordinates of the 
sensors (i.e., T1, T2, T3, T4, UL, and LL) were used for analysis 
because the movement along the x (lateral) axis is not significant 
during speech of healthy talkers [16]. 

 
3. METHOD 

 
Support vector machine [11] was used to classify those phoneme 
production samples based on the movement time-series from the 
six individual articulators, and for all possible combinations of 
those articulators. 

SVM classifiers project training data into a higher 
dimensional space and then separate classes using a linear 
separator [11]. The linear separator maximizes the margin between 
groups of training data through an optimization procedure. Those 
training samples on the boundaries of the classes are called support 
vectors. A kernel function is used to describe the distance between 
two samples (i.e., u and v in Equation 1). The following radial 
basis function was used as the kernel function KRBF in this study, 
where λ is an empirical parameter: 

||)||1exp(),( vuvuKRBF −−= λ                 (1) 

For more details, please refer to [17], which describes the 
implementation of the SVM used in this study. 

The same approach for constructing data samples in [2, 4, 5] 
was used in this study, where a sample (e.g., u or v in Equation 1) 
is a concatenation of time-sampled motion paths of articulators as 
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data attributes. Initially, the movement data of each individual 
articulator for each stimulus (a vowel or consonant) were time-
normalized and sampled to a fixed length (i.e., 10 frames). The 
length was fixed, because SVM requires the input samples to be 
fixed-width array. The predominant frequency of tongue and lip 
movements is about 2 to 3 Hz for simple CVC or VCV utterances 
[18], thus 10 samples adequately preserve the motion patterns. 
Then, the arrays of y or z coordinates for those articulators were 
mean-normalized and concatenated into one sample (vector) 
representing a vowel or consonant. Overall, each sample contained 
20 × p (10 frames × 2 dimensions × p articulators) attributes for p 
articulators (1≤ p ≤ 6). An integer (e.g., 1 for //, and 2 for 
//) was used for labeling the training data. 

Cross validation is a standard procedure for evaluating the 
performance of classification algorithms in machine learning, 
where training data and testing data are unique. In this study, 
Leave-N-out cross validation was used, where N (= 8 or 11) is the 
number of vowels or consonants, respectively. In each execution, 
one sample for each phoneme (totally N phonemes) in the dataset 
was selected for testing and the rest were used for training. There 
were a total of m executions; where m is the number of samples per 
phoneme. The average classification accuracy of all m executions 
was considered as the overall classification accuracy [19]. 
 

4. RESULTS AND DISCUSSION 
 
4.1. Vowel classification on individual articulators 
 
Figure 2 gives the average vowel classification accuracies across 
participants for each individual articulator. Paired-sample t-test 
showed the accuracy obtained from any single tongue articulator 
(i.e., T1, T2, T3, or T4) was significantly higher than that from UL 
or LL; the accuracy obtained from LL was significantly higher 
than that for UL (p < 0.01); there was no significant difference 
among the different tongue articulators. This finding might be 
explained by the tight biomechanical coupling between adjacent 
tongue regions [15].  

In general, the findings suggested that tongue sensors 
contribute more to vowel classification than do the lips, a finding 
which is consistent with the long-standing descriptive knowledge 
in classical phonetics, in which vowels are distinguished by tongue 
height and front-back position [13]. The finding that the accuracy 
obtained from LL is higher than that for UL was not surprising, 
because the movement of LL included the movements of the jaw, 
which was a major articulator for vowel production [1, 15, 20]. 

 

 

Figure 2. Average vowel classification accuracies across participants for 

individual articulators (diamond is the mean value; red line is the median; 
edges of the boxes are 25 and 75 percentiles). 
 
4.2. Consonant classification on individual articulators 
 
Figure 3 gives the average consonant classification accuracies 
across participants for each individual articulator. Similarly to the 
results for vowel classification and not surprisingly, accuracy 
obtained from any single tongue articulator was significantly 
higher than that for LL or UL, except T3 had no significant 
difference with LL; accuracy for LL was significantly higher than 
that for UL (p < 0.01). More interestingly, unlike the vowel 
classification results, the consonant classification accuracy 
obtained from T1 was significantly higher than that from T2 (p < 
0.05), but no significant difference with that from T3 or T4. There 
was no significant difference observed among T2, T3, or T4. 

The finding that T1 (Tongue Tip) contributes significantly 
more than T2 may reflect the quasi-independent movement of 
these regions during consonant production. When compared to the 
vowel findings, these findings suggested that consonant production 
involves more features (including place and manner of 
articulation), and that the tongue tip plays an important role in 
encoding these features. For example, dental consonants (e.g., //) 
require tongue tip to have contact with teeth; and alveolar 
consonants (e.g., //) are produced with short distances between 
the tongue tip and alveolar ridge. Based on these findings, T1 
appears to be the best sensor to use if only one tongue articulator 
can be used in a study. 

 

 

Figure 3. Average consonant classification accuracies across participants 
for each individual articulator (diamond is the mean value; red line is the 
median; edges of the boxes are 25 and 75 percentiles). 
 
4.3. Classification on articulator combinations 
 
To determine a minimum set of sensors that can be used to 
accurately classify speech movements, we compared the 
classification accuracies of all relevant combinations of 
articulators. We hypothesized that using only four articulators {T1, 
T4, UL, LL} that combined can capture the major movements of 
tongue and lips during speech. Our hypothesis was also informed 
by the observations reported in sections 4.1 and 4.2: T1 contributes 
significantly more in consonant production than T2 does; {T1, T4} 
obtained higher accuracy than {T1} or {T4}). Thus, Q3 in the end 
of Section 1 can be further refined as 

Q4. Is {T1, T4, UL, LL} a minimum set of articulators that can 
match the accuracy level achieved using all six articulators 
(i.e., {T1, T2, T3, T4, UL, LL})? 
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To address this question we compared the classification 
accuracies of all relevant combinations of articulators. For the 
convenience of explanation, we name the hypothesized optimal 
combination/set 

A = {T1, T4, UL, LL}            (2) 
First, the accuracy obtained from A was compared to those 

from combinations with fewer articulators (i.e., {T1, T4}, {T1, T4, 
UL}, and {T1, T4, LL}, and single articulators, {T1}, {T4}, {UL}, 
and {LL}) to verify no combination with fewer articulator than A 
has similar or higher accuracies than that for A. Second, A was 
compared to those combinations without lip articulators but with 
more tongue articulators (i.e., {T1, T4, T2}, {T1, T4, T3}, {T1, 
T4, T2, T3}) to verify lip articulators are needed to avoid accuracy 
decrease. Finally, A was compared to those combinations with 
extra articulators (i.e., A ∪ {T2}, A ∪ {T3}, and A ∪ {T2, T3}) to 
verify that extra (tongue) articulators do not help to improve the 
classification accuracy. 

Table 1 lists the accuracies obtained from A and from all 
other relevant combinations, as well as the significances between 
A and every other combination. As anticipated, the accuracy 
obtained from A was significantly higher than accuracy obtained 
from any combination with fewer articulators or any combination 
with extra tongue articulators but without lip articulators, which 
suggested that classification accuracy will decrease if all 
articulators in A are not included. Moreover, the addition of extra 
articulator on top of A did not increase the classification accuracy. 
Therefore, our results suggested {T1, T4, UL, LL} is a minimum 
set that can accurately encode articulatory distinctiveness of 
vowels and consonants. 
 
Table 1. Average vowel and consonant classification accuracies 
across participants on selected articulator (sensor) combinations.  

Articulator (Sensor) 
Combinations 

Vowel 
Classification 
Accuracy (%) 

Consonant 
Classification 
Accuracy (%) 

{T1} 81.74 *** 81.30 *** 
{T4} 85.57 *** 71.74 *** 
{UL} 63.10 *** 43.18 *** 
{LL} 73.29 *** 67.18 *** 

{T1, T4} 88.08 *** 87.72 ** 
{T1, T4, UL} 90.62 * 89.97 
{T1, T4, LL} 90.76 * 90.10 * 
{T1, T4, T2} 86.88 *** 89.97 
{T1, T4, T3} 86.58 *** 90.10 * 

{T1, T4, T2, T3} 85.70 * 87.04 * 
{T1, T4, UL, LL} 91.65 91.36 

{T1, T4, UL, LL, T2} 91.00 90.67 
{T1, T4, UL, LL, T3} 90.87 90.85 

{T1, T4, UL, LL, T2, T3} 90.02 90.85 

Significant differences between A ({T1, T4, UL, LL}) and every 
other combination are marked: * p < 0.05, ** p < 0.01, *** p < 
0.001. 
 

Relation to prior work. Although studies on speech 
articulation have often used three or four tongue sensors [2, 4, 5, 8, 
15, 16, 20, 21, 22, 23, 24, 25], investigators have not empirically 
determined that this number of sensors is necessary. Our previous 
work [2] investigated the articulatory distinctiveness of vowels and 
consonants based on all six articulators, but not on individuals. Qin 
and colleagues [26] showed that three to four sensors are able to 
predict the tongue contour with only 0.3-0.2 mm error per point on 
the tongue surface. Those studies, however, did not reveal if fewer 
tongue articulators are sufficient for studies typically using three or 
four tongue sensors. To our best knowledge, this study is the first 
to empirically determine the optimal number of sensors and their 
locations for speech articulation studies. Of course, as mentioned 
previously, the number of sensors and their locations may vary 
depending on the purpose of the study and its application. For 
example, when investigating disordered speech articulation, it may 
be practical to use only two tongue sensors (typically tongue tip 
and tongue body back) [19, 20]. A single sensor (typically tongue 
tip) may also be adequate for treatment studies as well (e.g., [9, 
10]). 
 

5. CONCLUSION AND FUTURE WORK 
 
This research studied the contribution of six articulators (i.e., 
tongue tip, tongue blade, tongue body front, tongue body back, 
upper lip, and lower lip, named as T1, T2, T3, T4, UL, and LL, 
respectively) to the production of major English vowels and 
consonants. A support vector machine was used to classify those 
vowel and consonant samples based on the movement of both 
individual articulators and their various combinations. The results 
indicated that any single tongue articulator had significantly higher 
contribution to both vowel and consonant production than did 
either lip articulator. Among the tongue articulators, T1 had 
significantly higher contribution than did T2 for consonant 
production, but no significant differences were observed among 
the other tongue articulators. In addition, our findings suggested 
{T1, T4, UL, LL} may be sufficient for typical assessment and 
treatment studies (e.g., a silent speech recognizer from articulatory 
movements), and that, if only one tongue articulator can be used, 
T1 conveys the most articulatory information. 

Future work includes (1) extending the stimuli from 
phonemes to words and sentences, because the individual 
articulators may have different levels of contribution in word or 
sentence production, and (2) determining if the current findings are 
applicable to vowel and consonant production by talkers with 
motor speech disorders. 
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