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ABSTRACT

The increasing need for secure authentication systems has moti-
vated recent interest in effective algorithms for Speaker Verification
(SV). In particular, there is increasing need for noise robust algo-
rithms for SV, which will allow SV systems to operate successfully
in real conditions, which are typically noisy.

Speaker verification addresses a pattern classification problem,
in which there is a tradeoff between false acceptance and false rejec-
tions. Traditional approaches optimize the parameters of a classifier
for a single operating point emobidied by the proportions of posi-
tive and negative examples in the training data, or by learning the
parameters without considering the tradeoff.

In a real situation where noise is present, the operating point
is effectively unknown and may not match training conditions. We
believe that for such situations the optimization of the parameters
should not be limited to a single operating point, and that a more
robust strategy is to optimize the parameters for all operating points
by minimizing the area under the detection error tradeoff curve. In
this paper we investigate the minimization of the area under the de-
tection error curve in noisy conditions. Experiments performed on
the database NIST2008 show our method improves the performance
with respect to conventional methods.

Index Terms— Speaker verification, robustness, minimum ver-
ification error, joint factor analysis, detection error tradeoff.

1. INTRODUCTION

Speaker verification (SV) systems perform a voice-based biometric
authentication task. Given a recording of a spoken utterance and a
claimed identity for the speaker, they must verify that the utterance
was indeed spoken by the claimed speaker.

The state-of-the art in SV systems is quite advanced, and ex-
tremely good performance can be obtained on clean speech record-
ings. However, when the speech recordings have been corrupted by
noise, performance degrades remarkably even for state-of-art algo-
rithms, as documented by Ferrer et al. [1], who demonstrate (on a
new noisy database that they introduce for the research community)
that the performance obtained with an I-vector front-end followed
by PLDA falls with decreasing SNR. A variety of approaches have
consequently been proposed in the literature to deal with the prob-
lem of noise in speech-classification tasks including SV, such as de-
noising the signal [2], reducing the noise in speech feature vectors
[3, 4, 5, 6, 7], or simply projecting out noise factors from the data
[8]. Other methods, such as the algorithm presented by [9], attempt
to ameliorate the effect of noise by utilizing noise-robust feature rep-

resentations, obtained for instance by replacing DFT spectral estima-
tion with temporally weighted linear prediction (LP).

But what about the basic pattern classification paradigm used
for verification itself? How does that affect the robustness of ver-
ification systems to noise? We address this problem in this paper.
Specifically, we demonstrate that through a modification of the train-
ing paradigm to consider all possible operating points, the classifier
itself can be made more robust to noise, sometimes in a surprising
way. To explain, let us consider errors in SV systems. SV systems
can commit two kinds of errors: false acceptance (FA), i.e. erronous
acceptance of imposters, and false rejection (FR), i.e. erroneous re-
jection of valid speakers. These can be traded off for one another.
Each combination of FA and FR represents an operating point. On
a plot of FA vs. FR, the continuum of possible operating points
can be represented as a curve, commonly known as the detection
error tradeoff or DET curve. Ideally, the system would be capable
of perfect performance, with zero FA and FR. Thus the DET curve
would pass through the origin and lie directly on the FA/FR axes.
In practice, the curve usually lies somewhat away from the axes as
illustrated by the examples in Figure 1. Nonetheless, the closer the
DET curve is to the axes, the more accurate the system will be.

Fig. 1. DET curves. The better classifier has the lower curve that
is closer to the axes. The “Equal Error Rate” is the operating point
shown by the intersection of the dotted diagonal line and the curve.

Speaker verification is usually formulated as a likelihood-ratio
test [10], computed using the estimated distribution of data from the
target speaker and that from impostors. Traditional learning algo-
rithms for SV systems such as maximum likelihood (ML) estimation
[10, 11] and factor analysis [12, 13, 14, 15, 16] learn the parame-
ters of these distributions to “fit” the training data. Discriminative
training paradigms attempt instead to optimize classification perfor-
mance. Eventually, the performance of SV systems is evaluated in
terms of how far the DET curve is from the axes, as characterized
by the equal error rate (EER) – the operating point at which the false
acceptance and false rejection probabilities are equal. Intuitively, the
lower the EER is, the closer the DET curve is to the axes.
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However, this introduces a dichotomy between the evaluation
and training procedures. Firstly, we note that the EER is not always
a good proxy for the distance of the DET curve from the axes; the
green curve in Figure 1 is clearly inferior to the blue one, yet has a
better EER. A better measure of the overall performance of the sys-
tem is the area under the curve (AUC) which measures the area be-
tween the axes and the DET curve. Secondly, the training procedures
themselves do not actually consider the DET curve, nor even the ac-
tual operating point at which the SV system is evaluated. Rather,
they consider the specific operating point exemplified by the propor-
tion of “positive” (from the target speaker) and “negative” (not from
the target speaker) training instances presented to them, which is
just a single operating point that may represent neither the EER nor
the overall DET curve. In prior work we, and others, have shown
[17, 18, 19] that training methods that explicitly optimize the DET
curve can result in improved verification performance over conven-
tional training procedures.

We now revert to our original problem of dealing with noise.
Noise increases the inherent variability of the signal, potentially
shifting it from any operating point a classifier may be optimized for,
possibly in an unpredictable manner. In this paper we demonstrate
that an operating-point-agnostic training paradigm that optimizes
the entire DET curve can result in classifiers that are significantly
more robust to noise than conventional classifiers even when the
effect of noise is not explicitly considered. We present a training for-
malism that optimizes the entire DET curve by minimizing the AUC.
To obtain an analytical solution, we use the well known Wilcoxon
Mann Whitney (WMW) statistic [20] as a proxy to the AUC The
parameters of the distribution are estimated using a (GPD) gener-
alized gradient descent algorithm. The AUC-minimization training
paradigm can be applied to most current learning methods for SV
systems including discriminative Minimum Verification Error train-
ing, Joint-Factor Analysis (JFA) [12, 13, 14, 15, 16] and its various
extensions and modifications.

Models trained in this manner are seen to be more robust to
noise than models trained by conventional maximum likelihood or
discriminative training. Moreover, we also observe a surprising in-
version of behavior in training paradigms. In conventional systems,
discriminative training schemes such as minimum-verification er-
ror training [21], although more effective than simple maximum-
likelihood training, are found to be less effective than factor analyzed
models [12, 13, 16], particularly when the latter too are discrimina-
tively trained. However, models are trained to minimize the AUC, an
inversion happens on noisy data – the performance of MVE-trained
classifiers surpasses that of factor-analyzed classifiers!

The rest of the paper is as follows: in Section 2 we outline con-
ventional training methods for speaker verification systems, in Sec-
tion 3 we describe our operating-point-agnostic training approach,
in Section 4 we describe our experiments and finally in Section 5 we
present our conclusions.

2. MODELS FOR SPEAKER VERIFICATION

The main purpose of a SV systems is to verify the identity of a
speaker providing a reliable decision (accept or reject a speaker)
given a claimed identity and a spoken phrase. Conventionally, this
is generally treated as a hypothesis testing problem. We define two
hypotheses: a) the null hypothesis H0 accepts the speaker as legit-
imate and b) the alternative hypothesis H1 rejects him as impostor.
The actual testing is performed using a likelihood ratio test. A para-
metric model with parameters ΛS is defined for the distribution of
data from the target speaker S. An imposter model with parameters

λS̄ is specified for the class of impostors the aggregate of all speak-
ers who are not S. The actual likelihood-ratio is stated as follows:

θS (X) = log (P (X|ΛS))− log (P (X|ΛS̄))
accept H0 if θS(X) > τ
accept H1 otherwise

(1)

The problem now reduces to finding an appropriate model for
P (X|ΛS) and P (X|ΛS̄). For this, each recording χ is transformed
into a sequence of feature vectors, typically mel-frequency cepstral
coefficient vectors, augmented by their delta (velocity) and dou-
ble delta (acceleration) coefficients. Thus, χ = X1, X2, · · · , XT ,
where Xi is the ith feature vector in the sequence. The vectors Xi
are assumed to be IID and have a a Gaussian mixture distribution
given by,

P (χ; ΛC) =
∏
i

∑
k

wCk N (Xi;µ
C
k ,Σ

C , k),

where C is either S or S̄, and wCk , µ
C
k and ΣCk are the mixture

weight, mean and covariance (usually assumed to be a diago-
nal matrix) of the kth Gaussian in the mixture. Thus ΛC =
{wCk , µCk ,ΣCk ∀k}.

The problem of training the system is reduced to learning the
GMM parameters ΛS and ΛS̄ for the true speaker S and impostor S̄
respectively. The imposter model ΛS̄ is typically trained from a large
corpus of imposter recordings, using the Expectation Maximization
(EM) algorithm [22]. Since this model represents the “universal”
speaker, it is frequently called the “Universal Background Model”
or “UBM”.

Typically, the amount of enrollment training data available from
the target speaker is insufficient to train ΛS directly using EM. In the
ideal case, where the recording conditions for the test data from the
speaker are identical to those in the enrollment data, the UBM ΛS̄
can be adapted to the enrollment training data using a maximum a
posteriori (MAP) adaptation procedure [11] to obtain ΛS .

When recording channel mismatches are expected between test
and enrollment data for the speaker, the state of the art uses joint
factor analysis (JFA) [14, 12] to train ΛS . The JFA approach de-
composes the parameters of the distribution into two sets of factors –
one representing the speaker and the second representing the chan-
nel. Channel factors, that contain no information about the speaker,
are marginalized out when performing the likelihood ratio test.

For JFA, the means {µS,Hi } of all the Gaussians in a GMM
ΛS,H , representing the distribution for speaker S recorded over
channel H are concatenated into a single vector, termed a supervec-
tor : MS,H = [µS,H1 ‖µS,H2 ‖ · · · ]. The supervector MS,H is further
assumed to be composed from a collection of factors as:

MS,H = m+ V yS + UxS,H +DzS , (2)

wherem is a global mean across all speakers (commonly the mean of
the UBM), V is the loading matrix that represents a speaker-specific
subspace, U is the loading matrix that represents a channel-specific
subspace, and D is a diagonal matrix. yS is known as the speaker
factor vector belonging to speaker S; it is normally distributed with
mean 0 and unit variance. xS,H , is a channel factor, specific to
speaker S recorded over channel H . Finally, z represents the resid-
ual error. The various loadings are learned from a large collection
of recordings over many speakers and channels, using EM. There-
after, to adapt the model to the target speaker, recorded over a given
channel, only factors yS and xS,H need be estimated. The proce-
dures for learning the loadings and factors, as well as for performing
classification with the resultant model are well described in [12, 14].
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3. LEARNING THE PARAMETERS TO MINIMIZE THE
AUC OF THE DET CURVE UNDER NOISY CONDITIONS.

Conventional training methods for learning the distribution param-
eters ΛS and ΛS̄ fall into two categories: generative and discrim-
inative. Generative procedures including MAP and JFA attempt to
estimate the distribution of each class S and Ŝ individually, without
regard to the actual classification performance obtained with them.
Discriminative approaches do optimize classification performance,
however they do so primarily at the operating point embodied in the
relative proportions of training data from S and Ŝ,

In contrast, we aim to optimize the performance over the en-
tire DET curve. We will do this is by minimizing the AUC - the
area under the DET curve. Consider a binary classifier to distin-
guish between classes S and S̄. Let H, and W be the two sets of
data belonging to S and S̄ respectively. The empirical AUC for the
classifier computes a score θ(χ) to determine if χ belongs to S as:

G(Λ) = 1.0−
∑
χ∈H

∑
χ̂∈W 1(θ(χ) > θ(χ̂))

|H||W| (3)

where 1 is the indicator function. The second term on the right hand
side comes from the Wilcoxon-Mann-Whitney statistic [20] to com-
pute the area under the curve. G(Λ) is a function of Λ = ΛS ∪ ΛS̄ .

The empirical AUC of equation 3, however, is discontinuous,
thanks to the indicator function. We therefore “smoothen” it by re-
placing the indicator function by the following sigmoid:

R(a, b) =
1

1 + exp (−γ ϕ(a, b))
, (4)

where γ governs the steepness of the sigmoid and ϕ is the distance
ϕ(a, b) = a − b. Introducing this into Equation 3, we obtain the
following approximation:

G(Λ) = 1.0−
∑
χ∈H

∑
χ̂∈W R(θ(χ), θ(χ̂))

|H||W| . (5)

Equation 5 now forms our modified objective function which
must be minimized to learn ΛS and ΛS̄ . This can be minimized
using the generalized probabilistic descent algorithm (GPD). Let
X = H ∪ W be the complete set of all training instances. The
GPD update rules to learn Λ = ΛS ∪ ΛS̄ are given by:

Λt+1 = Λt − ε∇L(X,Λ) (6)

∇L(X,Λ) = − 1

|H||W|
∑
χ∈H

∑
χ̂∈W

γ(1−R)

[
∂θ(χ)

∂Λ
− ∂θ(χ̂)

∂Λ

]
(7)

where R denotes R(θ(χ), θ(χ̂)) and ε is a learning rate parameter.
We now explain how these rules can be applied to learn model

parameters within both, the minimum-verification error and JFA for-
malisms.

3.1. Minimum Verification Error (MVE)

Minimum verification error training for SV systems adapts a UBM
simultaneously to a set of imposter data and data from the target
speaker, to obtain a user-specific imposter model ΛSS̄ and a user
model ΛS that together provide the the best empirical verification
error on the training data. We replace the empirical verification error
objective function used in MVE training by the following:

G(Λ) = 1.0−
∑
χ∈H

∑
X∈χ

∑
χ̂∈W

∑
X̂∈χ̂R(θ(X), θ(X̂))∑

χ∈H Lχ
∑
χ̂∈W Lχ̂

(8)

where Lχ is the number of feature vectors in χ. For any GMM
parameter φ, the GPD update rule is given by, φt+1 = φt −
ε∇φL(X,Λ). Representing

∑
χ∈H Lχ = |H| and

∑
χ∈W Lχ =

|W|, the gradient∇φL(X,Λ) is given by:

∇φL(X,Λ) =− 1

|H||W|∑
χ∈H

∑
X∈χ

∑
χ̂∈W

∑
X̂∈χ̂

γ(1−R)∇φl(X, X̂,Λ) (9)

where ∇φl(X, X̂,Λ) is a local gradient with respect to φ at χ, χ̂
and has the form ∇φl(X, X̂,Λ) = − ∂θ(X)

∂φ
+ ∂θ(X̂)

∂φ
, where ∂θ(X)

∂φ
represents the derivative of the log-likelihood-difference given by
the Gaussian mixture models for the target speaker and the imposter
model for vector X with respect to φ.

The update rules for each of the parameters wSk , µSk and ΣSk
can be easily obtained by computing the derivatives, ∂θ(X)

∂wS
k

, ∂θ(X)

∂µS
k

and ∂θ(X)

∂ΣS
k

. The update rules for the parameters of the user-specific
imposter model ΛS̄ can be similarly obtained.

3.2. Joint Factor Analysis (JFA)

For the case of joint factor analysis, the learning is divided into two
parts. First, the global loading matrices, V (speaker loading), U
(channel loading) and D (the diagonal uniqueness) are learned from
a large collection of speaker recordings over a variety of channels.
The global parameters learn the general characteristics of the speaker
and channel subspaces. Second, we estimate the particular parame-
ters: yS , which represents the target speaker factor; xS which char-
acterizes the session or channel specific H factor for speaker S, and
z is the uniqueness factor. These specific parameters are customized
to a specific speaker.

The discriminant objective function, takes the form of Equation
10.

θ(χ) = log p(χ;V,U,D, yS(χ), xH(χ),S(χ))

− log p(χ;λS̄ , U, xH(χ),S(χ)) (10)

S(χ) characterizes the speaker S in the session χ. H(χ) char-
acterizes the recording channel in χ, m is the global mean com-
puted from the universal background model λS̄ . Equation 10 com-
putes the log-likelihood for the model of speaker S according to
M = m+V yS(χ)+UxS(χ),H(χ)+Dz. The imposter log-likelihood
is computed using M ′ = m+ UxS(χ),H(χ) +Dz, which just con-
siders the universal m adjusted to a channel factor given by the in-
formation in the recording χ.
3.2.1. Estimating Loading Matrices

To estimate the loadings, let X, be a large collection of recordings
from a large number of speakers S. Let XS represent the recordings
from speaker S ∈ S and XS̄ the recordings from all imposters for
S, i.e. S̄ = S\S and X = XS ∪ XS̄ . We can define the AUC
objective as follows,

G(Λ) = 1.0−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

R(θS(χ), θS(χ̂))

|XS ||XS̄ |
(11)

The GPD update rule for any global parameter φ is given by φt+1 =
φt − ε∇φL(X,Λ), where

∇φL(X,Λ) =−
∑
S∈S

∑
χ∈XS

∑
χ∈XS̄

γ(1−R)∇φl(χ, χ̂,Λ)

|XS ||XS̄ |
(12)
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and∇φl(χ, χ̂,Λ) is a local gradient with respect to φ at χ, χ̂, where
∇φl(χ, χ̂,Λ) = − ∂θ(χ)

∂φ
+ ∂θ(χ̂)

∂φ
. A solution to JFA was studied in

[23].

3.2.2. Estimating Factor Vectors

To estimate the particular parameters or factors for a particular S,
the AUC objective function is given by Equation 13.

G(ΛS) = 1.0−
∑
χ∈XS

∑
χ∈XS̄

R(θS(χ), θS(χ̂))

|XS ||XS̄ |
(13)

Note that, Equation 13 considers just one speaker S. The GPD up-
date rule uses the following gradient:

∇φL(X,Λ) = −
∑
χ∈XS

∑
χ∈XS̄

γ(1−R)∇φl(χ, χ̂,Λ)

|XS ||XS̄ |
·

where∇φl(χ, χ̂,Λ) is defined as∇φl(χ, χ̂,Λ) = − ∂θ(χ)
∂φ

+ ∂θ(χ̂)
∂φ

.
To update the parameters yS , xS,H and zS , we can compute the
derivatives ∂θ(χ)

∂yS
, ∂θ(χ)
∂xS,H

and ∂θ(χ)
∂zS

and employ the GPD update
rule. In practice these factors can be estimated using conventional
EM algorithm.

This methodology can also be extended to i-vector feature ex-
traction and PLDA [16], customizing the update rules to employ the
partial derivatives for their particular parameters.

4. EXPERIMENTS AND RESULTS

We conducted a set of experiments to evaluate the proposed AUC-
minimization approach. In the first, we compared the performance
of conventional MAP and JFA based learning with JFA optimized
using the AUC criterion on speech recordings, where the noise con-
ditions in the training and test data were matched. In the second, we
compared the performance of AUC-minimization base MVE against
conventional methods on mismatched conditions, where the test data
are noisy.

4.1. Experimental Setup

We employed the NIST Speaker Evaluation 2004, 2005, 2010 and
2008 database [24] to complete this study. We followed the evalua-
tion rules (e.g. not using any target speaker in the test set as an im-
poster for other target speakers). For the feature extraction, a short-
time 256-pt Fourier analysis is performed on a 25 ms analysis win-
dow with a frame shift of 10 ms between analysis windows. The fea-
ture vectors (token) are 39-dimensional, comprising Mel Frequency
Cepstral Coefficients (MFCCs), and their delta and double delta co-
efficients. We included a frame removal criterion that to eliminate
low energy frames that do not provide information about the identity
of the person.

4.2. Baseline framework

We first obtain a baseline result using both MAP and JFA to model
each speaker [25]. We first compute a gender-dependent and target-
independent UBM trained from a pool of raw speech (NIST Speaker
Evaluation 2004 core database). This model captures the character-
istics of all the data vectors of the users not belonging to the target
set of speakers to be evaluated. The expectation maximization (EM)
algorithm is used to estimate the GMM parameters of the UBM.
For the MAP-based baseline, the models for target speakers in the
evaluation set are obtained by MAP adaptation of the UBM. For the

JFA baseline, the speaker and channel factors were learned from the
pool of impostors using EM and adapted to individual speakers by
estimation of factors. The code for JFA was obtained from the im-
plementation of the Speech Processing Group at the Brno University
of Technology [26] and used in part or whole by [27, 28, 29] well
known sites. All verification tests were performed under the hypoth-
esis testing framework.

4.3. Experiments on noisy speech

In this experiment we compared baseline techniques to AUC-
minimized training on noisy speech. Experiments were performed
using speech corrupted to a variety of SNRs (10dB, 15dB, and a
cocktail of 0-15dB), all of them using babble noise.

For all experiments, we used 100 male registered users. Follow-
ing NIST 2008 Evaluation rules, the probability of being a target,
Ptarget, is 0.01 and the probability of being a impostor, Pimpostor ,
is 0.99. We use a 512 component GMM in all cases. No normaliza-
tion was used after the score computation to observe the full effect
of MVE and JFA approach.

The first column of Table 1 shows the results obtained for clean
data. The results are consistent with comparisons performed by
other researchers: JFA outperforms both baseline MAP learning
as well MVE learning significantly. In both cases, the models
learned via AUC-minimization somewhat outperform convention-
ally trained models. All performance numbers are noted to improve
as the amount of training data used to learn the base UBM increases.

The remaining columns of Table 1 compares MAP, MVE, JFA,
AUC-optimized JFA and AUC-optimized MVE on noisy speech of
various SNRs. We observe that AUC-optmized learning consistently
outperforms conventional training in all cases. Moreover, the best
results are obtained with AUC-optimized MVE. The results are con-
sistent across all noise conditions. This contravenes the observation
on clean speech, where the best performance is obtained with JFA.

System clean 10dB 15dB 0-15dB (cocktail)
MAP 15.95 18.01 17.48 35.7
MVE 13.51 17.67 17.15 28.1
JFA 12.07 17.23 16.79 27.3
JFA-AUC 11.93 16.51 16.22 24.0
MVE-AUC 13.21 15.93 15.78 22.8

Table 1. EER of the noisy task (babble noise).

5. CONCLUSION AND DISCUSSION

The results in Section 4 are consistently significant. Clearly, a
learning paradigm that optimizes the entire DET curve results in
better performance than that obtained with conventional maximum-
likelihood of discriminative training methods. What is interesting,
however, is that the improvements obtained from AUC minimiza-
tion are actually significantly greater on noisy speech than on clean
speech. A possible reason is that AUC minimization naturally ac-
counts for any shift in the data away from the intended operating
point where performance is measured. More curiously, the per-
formance of MVE, which functions over the entire space of data,
benefits significantly more than JFA, which factors out subspaces.
Thus, the final performance of AUC-optimized MVE on noisy data
is significantly superior to that obtained with similarly trained JFA.
Moreover the gains increase with increasing noise level.

As part of the future research, we will also investigate other ob-
jective functions that assigns weights to the DET curve so that we
control not just the area under the curve, but the curve at each oper-
ating point.
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