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ABSTRACT

I-vector algorithm was previously adopted to improve the
performance of ASR (Automatic Speaker Recognition) sys-
tem which is degraded by emotion variability. The variability
compensation technique is LDA (Linear Discriminant Anal-
ysis) which assumes the variability is speaker-independent.
However, this assumption is not suitable for emotion variabil-
ity because we discover that the pattern of emotion variability
is speaker-dependent. Therefore, a novel emotion synthesis
algorithm AASR (Atom Aligned Sparse Representation) is
proposed to characterize this speaker-dependent pattern and
compensate the emotion variability within i-vectors. The
experiments conducted on MASC show that our algorithm,
compared with the GMM-UBM algorithm and the conven-
tional variability compensation algorithm LDA, both can
enhance the speaker identification and verification perfor-
mances.

Index Terms— Emotional Speaker Recognition, Speaker-
Dependent Variability, Atom Aligned Sparse Representation

1. INTRODUCTION

People often speak with different emotional states in real-life
yet the enrollment speeches of the speaker identification ap-
plication are usually neutral, resulting in the emotion incon-
sistency between enrollment and test data. This inconsistency
degrades the performance of ASR system, and ESR (Emo-
tional Speaker Recognition) is proposed for alleviating this
negative effect.

Many efforts have been taken to improve the performance
of ESR system. Recently, the methods used to compensate
the channel variability are applied to eliminate the effect in-
duced by emotional state mismatch. EAP (Emotion Attribute
Projection) [1] is developed on the basis of NAP (Nuisance
Attribute Projection) to subtract the emotional attribute from
each utterance. Also, i-vector [2] modeling the total variabil-
ity (containing channel variability and speaker variability) is
applied into ESR by replacing the channel variability matrix
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with the emotion variability matrix [3]. Both methods can en-
hance the performance of ESR compared with the algorithms
without emotion compensation.

SRC (Sparse Representation Classifier) is also applied in-
to speaker recognition system. The fixed-length representa-
tion of a given utterance can be considered as a sparse linear
sum of the atoms of the overcomplete dictionary. Naseem in-
troduced SRC into speaker recognition on a pure telephone
database – TIMIT [4]. The GMM mean supervector is uti-
lized to represent an utterance. Afterwards, SRC based on
the low-dimensional representation – i-vector is proposed [5],
and SRC is used to compute the similarity score of two i-
vectors, based on the process of channel compensation.

In conventional i-vector algorithm, the common variabil-
ity compensation strategy is LDA and WCCN (Within Class
Covariance Normalization) based on the assumption that the
pattern of variability is speaker-independent. However, the
assumption is not suitable for the emotion mismatch prob-
lem because we discover that the pattern of emotion variabil-
ity is dependent on the speakers. Thus, we propose a novel
compensation algorithm named AASR (Atom Aligned Sparse
Representation) to model the speaker-dependent relationship
between the total variability space and the pure speaker space.
Meanwhile, the emotion synthesis algorithm based on AASR
is used to substitute the conventional variability compensa-
tion method LDA. Our algorithm achieves a promising result
on the emotional corpus MASC.

The remainder of this paper is organized as follows. The
traditional speaker recognition system based on i-vector is
introduced in Section 2. Section 3 illustrates the Sparse
Representation algorithm. Section 4 explains the speaker-
dependent property of emotion variability and presents the
novel AASR algorithm. The experimental results on MASC
are reported in Section 5. Finally, the conclusion is drawn in
Section 6.

2. I-VECTOR ALGORITHM

The conventional i-vector algorithm, used to solve the chan-
nel mismatch problem, usually takes three steps:

(1) i-vector extraction. The i-vector extraction can be seen
as a probabilistic compression process which reduces the di-
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mensionality of the GMM mean supervector. It models the
speaker-dependent and channel-dependent GMM supervector
M(s,h) as the sum of the speaker-independent mean supervec-
tor m and total variability vector,

M(s,h) = m+ Tw(s,h), (1)

where m is the UBM (Universal Background Model) mean
supervector. T and ws,h represent the total variability matrix
and the speaker-dependent and channel-dependent i-vector
respectively.

(2) variability compensation. Since the i-vector extrac-
tion algorithm does not separate the speaker variability and
the channel variability, channel compensation method must
be applied before computing the similarity score of two i-
vectors. The traditional compensation method is the combina-
tion of LDA and WCCN which remove the channel attribute
from i-vector.

The LDA algorithm maps the original space to the re-
duced optimal space by minimizing the intra-speaker variabil-
ity and maximizing the inter-speaker variability,

argmax
u

utSbu

utSwu
, (2)

where u is the direction of LDA projection matrix A, and
Sb and Sw are the inter-speaker covariance matrix and the
intra-speaker covariance matrix respectively. LDA linearly
transforms the original total variability space into the speak-
er variability space. LDA works well on the assumption that
the transformation relationship between these two spaces is
class-independent, i.e., speaker-independent in ASR system.
Channel variability can be regarded as speaker-independent
according to the analysis in [6].

The WCCN algorithm is to normalize the covariance of
the dimension-reduced i-vector to minimize the error expec-
tation of false alarm and false rejection.

(3) score computation. CDS (Cosine Distance Scoring)
method is applied to compute the similarity between two i-
vectors x1 and x2,

s(x1, x2) =
(Atx1)

tW−1(Atx2)√
(Atx1)tW−1(Atx1)

√
(Atx2)tW−1(Atx2)

,

(3)
where A is the LDA projection matrix and W is the WCCN
matrix.

The i-vector algorithm is also applied into ESR by replac-
ing the channel compensation with the emotion compensa-
tion when LDA algorithm is implemented in [3]. However,
the emotion variability is somewhat different from the chan-
nel variability because the pattern of emotion variability is
speaker-dependent.

3. SPARSE REPRESENTATION ALGORITHM

SR (Sparse Representation) algorithm assumes that a signal
can be represented by a sparse combination of some redun-

dant bases (i.e. atoms) which constitute a dictionary. The
typical SR algorithm usually takes two steps:

(1) Constructing the dictionary based on the developmen-
t corpus. The dictionary can be an exemplar-based dictio-
nary or a learned dictionary. An exemplar-based dictionary
arranges the i-vectors of the speakers as its atoms. A learned
dictionary can be trained in various ways. The learning al-
gorithm, mentioned in [7], is the feature-sign search and La-
grange Dual algorithm. The dictionary D is trained by solving
Equation(4),

argmin
C,D

||Y −DC||22 + γ||C||1, (4)

where Y is the set of training vectors, D is the resultant dic-
tionary consisting of the basis vectors of the linear space s-
panned by Y , C is the set of sparse coefficient vectors corre-
sponding to the set of Y , and γ is the weight which is used as
the tradeoff between the regression error ||Y −DC||22 and the
sparsity ||C||1 and is set to 5 according to our experiments.

(2) Attaining the sparse coefficient of the test samples. It
is a key step of SR algorithm and is achieved by L1-norm
technique,

argmin
c

||c||1 subject to ||y −Dc||22 ≤ ε, (5)

where y is the test sample, c is the resultant sparse coefficient,
D is the dictionary trained in step (1) and ε is the error bound.

SR can be used in various ways. In [5], the regression
error ||y−Dδ(c)||22 is applied as the distance of the test sam-
ple and target speakers’ atoms. δ(c) indicates that the co-
efficients, not corresponding to the target speaker, are set to
zero. In our paper, SR is applied for model synthesis through
aligned dictionaries.

4. ATOM ALIGNED SPARSE REPRESENTATION

4.1. Speaker-Dependent Emotion Variability

We draw the vowel triangle to observe the variation of for-
mants under neutral and panic between two different male s-
peakers as in Fig. 1, which illustrates that the amplitude and
the direction of the variation are different between two speak-
ers. Thus, the pattern of variation may vary among different
speakers. This opinion is also supported by many other stud-
ies on emotion recognition [8]. The dependency is mainly
caused by two factors. First, the channel variability is objec-
tive while the emotion variability is subjective, because the
emotional strength and expression style vary from person to
person. Second, the channel of an utterance is certain while
the emotional state is not because each person has different
emotional perception. Thus, we assume that the relationship
of emotional i-vector ye and neutral i-vector yn is modeled as
a speaker-dependent transformation function fs,

ye = fs(yn). (6)
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Fig. 1. Vowel triangle of two male speakers under neutral and
panic. (a) and (b) represent two different male speakers. The
solid and dot lines represent the vowel triangle under neutral
and panic respectively. The phonemes corresponding to the
3 vertexes of the vowel triangle are /A/, /OO/, /Y/ respec-
tively.

According to the analysis, LDA is not quite suitable for
emotion compensation so we develop a novel emotion syn-
thesis algorithm named AASR (Atom Aligned Sparse Rep-
resentation). The AASR is inspired by SR algorithm used
to recover and synthesize facial-expression mentioned in [9]
and it can depict the speaker-dependent pattern of emotion
variability.

4.2. Atom Aligned Sparse Representation

In our development corpus, each neutral utterance has an
aligned emotional utterance, which means that the two ut-
terances are from the same speaker and the contents of the
pair are the same. Given M aligned neutral and emotional
i-vector pairs (yi,n, yi,e), i = 1, 2, . . . ,M , the AAD (Atom
Aligned Dictionary) D can be trained by Equation(7), which
can be solved by feature-sign search algorithm and Lagrange
Dual [7].

argmin
C,D

||Y −DC||22 + γ||C||1. (7)

The variable Y is the set of combined neutral and emotion
pairs: Y =

(
yT:,n, y

T
:,e

)T
. D = (DT

n , D
T
e )

T is the AAD. The
sharing coefficient Ci can represent both yi,n and yi,e based
on the neutral dictionary Dn and emotional dictionary De re-
spectively. The coefficient-sharing property indicates that the
aligned i-vectors (yi,n, yi,e) share the same coordinates un-
der the spaces spanned by Dn and De. Thus, corresponding
atoms Dj,n and Dj,e representing the bases of these two s-
paces can be regarded as aligned. The schematic diagram of
the process is shown in Fig. 2.

Dn is regarded as the speaker variability space because no
emotion variability exists in Dn, and De represents the total
variability space, containing the emotion variability and the
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Fig. 2. Schematic diagram of AASR. Yi is the ith training
pair from Y and Ci is Yi’s corresponding sparse coefficient.
The AAD is the resultant aligned dictionary where the atom
pair (Dj,n,Dj , e) is aligned.

speaker variability. The corresponding bases Dj,n and Dj,e

indicate a transformation law from a base vector of the pure
speaker space to that of the total variability space. The latent
transformation law fj is

Dj,e = fj(Dj,n). (8)

fj is different for each Dj,n, so fj can model the speaker-
dependent transformation relationship. If cn is the sparse rep-
resentation of a neutral i-vector yn on the dictionary Dn by
Equation (5), cn is used to represent the speaker’s emotional
i-vector ye based on the emotional dictionary De.

ye = De ∗ cn. (9)

This transformation strategy can also be interpreted as that the
jth transformation law fj corresponding to the nonzero value
cn,j is used to guide the synthesis of emotional i-vector ye
because cn,j indicates yn is related to the jth atom in Dn.

4.3. Application of AASR

Although the emotion variability is much more complex than
the channel variability, there is one advantage that the num-
ber of emotional states is less than that of channels. Because
the channels with different telephones or microphones are re-
garded as different and the number of channels are innumber-
able, only the channel removal method LDA can be used. In
contrast, there are several theories about key emotional states
which can code the emotions expressed in speech. We adop-
t the four key emotional states theory (anger, elation, panic
and sadness) mentioned in [10]. Thus, the emotion synthesis
method is used to substitute the emotion removal method L-
DA mentioned in step (2) of Section 2. The synthesis algorith-
m introduced in Section 4.2 is used to generate the emotional
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Table 1. IRs by GMM-UBM, i-vector and AASR(%).
GMM-UBM i-vector AASR

neutral 96.23 93.47 96.80
anger 31.50 48.83 50.03
elation 33.57 49.40 50.90
panic 35.00 42.77 47.37

sadness 61.43 64.93 66.97
average 51.55 59.88 62.41

i-vector from the speaker’s neutral one. In evaluation stage,
each test sample is scored not only on the neutral i-vector of
the target speaker, but also on the synthesized four emotional
i-vectors by the CDS score computation method. The final
score is the maximum value of these scores.

5. EXPERIMENT

5.1. Corpus and Setup

We perform our experiments on an emotional speech database
named MASC (Mandarin Affective Speech Corpus) [11],
which includes five emotional states: neutral, anger, ela-
tion, panic and sadness. 68 native Mandarin speakers (23
females and 45 males) are asked to produce 20 utterances
for three times under these five emotional states and 2 extra
neutral paragraphs. Each neutral utterance of a speaker has
a corresponding utterance with the same content under each
emotional state. The utterance pairs thus can be constructed
by the corresponding neutral and emotional utterances. In our
experiments, the first 18 speakers are used as development
corpus and the remaining 50 speakers as evaluation corpus.
Each target speaker’s model in the evaluation corpus is trained
by using the neutral paragraphs and all the utterances are used
as test samples.

In our experiments, 13-order MFCC (Mel-Frequency
Cepstrum Coefficient) plus delta is extracted with 32ms frame
length at a 16ms frame rate. The neutral paragraphs of the
development corpus are utilized to train the 512-component
UBM by Expectation Maximize (EM) algorithm.

The total variability matrix T is trained by all the ut-
terances and paragraphs in the development corpus. The
300-dimension i-vector of each sample is extracted. For
conventional i-vector, LDA strategy is applied to reduce the
i-vector’s dimensionality to 200. For AASR, the AAD is
trained by using all the aligned pairs in the development
corpus and the pair number under each emotional state is
1080.

5.2. Experimental Result

The IRs (Identification Rates) of the GMM-UBM algorithm,
the i-vector algorithm with LDA and WCCN compensation
technique, and our AASR algorithm are shown in Table. 1.

As shown in Table. 1, our algorithm can enhance the per-
formance of ASR in every emotional state. The average IR in-
creases by 10.86% and 2.53%, compared with that of GMM-
UBM and conventional i-vector algorithm. It is also worth
mentioning that the conventional i-vector algorithm would
degrade the performance of ASR under neutral yet our algo-
rithm does not. Because the neutral enrollment utterances and
neutral test utterances are matched and the emotion compen-
sation process is not expected, our emotion synthesis method
won’t change the original neutral model while the variability
removal method LDA removes the emotion attribute from the
neutral i-vector.

The DET (Detection Error Tradeoff) curve of the three
algorithms are shown in Fig. 3, and the improvement of EER
(Equal Error Rate) is similar to that of average IR.
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Fig. 3. DET plot by GMM-UBM, i-vector and AASR.

The EERs are 18.75%, 14.10% and 12.77% for GMM-
UBM, i-vector and AASR algorithm respectively. Our algo-
rithm also outperforms the two baseline algorithms. The EER
decrease by 5.98% and 1.33%, compared with that of GMM-
UBM and conventional i-vector.

6. CONCLUSION

Emotion variability has some common property with the
channel variability, yet they have many distinct properties.
This paper discovers that the channel variability may be
speaker-independent yet the emotion variability is speaker-
dependent. Thus, the common channel compensation tech-
nique LDA is not suitable for ESR system. We propose a
novel speaker-dependent emotion compensation technique –
AASR to synthesize the emotional i-vectors. In the future,
we will employ more effective manifold tools to depict the
concrete dependency and propose explicit emotion compen-
sation technique, such as rule based compensation, to handle
speaker-dependent variability.
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