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ABSTRACT 

 
This study explores various back-end classifiers for robust speaker 
recognition in multi-session enrollment, with emphasis on optimal 
utilization and organization of speaker information present in the 
development data. Our objective is to construct a highly 
discriminative back-end framework by fusing several back-ends on 
an i-vector system framework. It is demonstrated that, by using 
different information/data configuration and modeling schemes, 
performance of the fused system can be significantly improved 
compared to an individual system using a single front-end and 
back-end. Averaged across both genders, we obtain a relative 
improvement in EER and minDCF by 56.5% and 49.4%, 
respectively. Consistent performance gains obtained using the 
proposed strategy validates its effectiveness. This system is part of 
the CRSS’ NIST SRE 2012 submission system. 
 

Index Terms— Universal Background Support, PLDA, 
speaker recognition, GCDS, classification algorithms 
 

1. INTRODUCTION 
 
Speaker verification, similar to other recognition/verification tasks, 
largely depends on the training and development utterances or 
instances from each speaker/class. The more information/instances 
available for one speaker/class, the more accurate the modeling can 
be. In more than a decade of speaker recognition evaluation (SRE) 
history hosted by the National Institute of Standards and 
Technology (NIST), a single instance (session) per 
enrollment/training for each speaker has been the dominating task 
[1, 2]. Consequently, speaker recognition systems, including 
universal background modeling-Gaussian Mixture modeling 
(UBM-GMM) [3], Gaussian Super-vector SVM (G-SVM) [4], and 
i-vector with probabilistic linear discriminative analysis (PLDA) 
[5-8] back-end, have become more or less optimized for the 
speaker detection task for single utterance enrollment. In NIST 
SRE 2012, multiple session enrollment and noisy test data were 
introduced for the very first time. These represent significant 
diversions from past evaluations and thus require a vigorous re-
design and optimization of the classification framework making 
maximal use of the available development and training data. 

Multiple session/instances for the enrollment speaker can 
drastically improve the system since the modeling process can 
learn more from the variability/nuances of the different utterances 
of the same speaker. Also, using out-of-set/impostor speakers in 
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the modeling becomes more important as classifiers such as 
support vector machines (SVM) become more common. However, 
information from the non-target data can be practically unlimited, 
and thus the question of how exactly to employ them for maximum 
benefit is critical. We propose a series of solutions aimed at finding 
a generic and effective strategy of utilizing development data for 
optimal speaker classification.  

Multi-session enrollment for speaker recognition has been 
investigated in the past, based on corpora such as TIMIT, YOHO 
[9], and ROSSI [10]. These datasets contain a limited number of 
speakers and/or noise variations, which precludes large scale 
experiments similar to SRE. This study, to the best of our 
knowledge, together with the efforts of other sites participating in 
NIST-SRE 2012, is a first attempt in using large noisy multi-
session data for speaker recognition. This work is based on the 
methods proposed in [5-8, 11-12], but the methods are further 
adapted and modified to handle the multi-session scenarios. 

This paper is organized as follows: Sec. 2-5 describe five 
back-ends utilized in this study and discuss what kind of 
information and processing they employ. Back-end fusions are 
shown in Sec. 6. A comprehensive experiment is established and 
discussed in Sec. 7 and 8, and research findings are summarized in 
Sec. 9. Relation to prior work is detailed in Sec. 10. 

 
2. GAUSSIANIZED COSINE DISTANCE SCORING (GCDS)  

 
The classical cosine distance scoring (CDS) for i-vector based 
system is [12]: 
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where A is a projection matrix, which may come from within class 
covariance normalization (WCCN) or linear discriminative 
analysis (LDA) projection, ‘t’ indicates the transpose operation, 
and jω denotes the i-vector of the jth speech utterance.  The 
operations are generally performed in a cascade fashion: where the 
i-vector is first projected through WCCN matrix and then LDA 
transformation is applied, both of which are estimated from a 
background data set. 

We note that performance of classical LDA-WCCN-CDS 
methods highly depend on the WCCN projection, which is usually 
difficult to estimate (especially in noisy and/or channel mismatch 
conditions). Therefore, we propose to replace the WCCN with 
background data based Gaussianization, named Gaussianized CDS 
(GCDS). The algorithm is outlined below (source code is provided 
online [13].): 

 
Step 1: Average the i-vectors of the jth enrollment speaker; 
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Step 2: Calculate the mean and variance of the background data, 
which are used to Gaussianize the i-vectors from Step1; 

Step 3: Apply length normalization on all the data [14]; 
Step 4: Apply LDA on all the data to reduce the dimensionality; 
Step 5: Repeat Step 3; 
Step 6: Perform cosine distance scoring; 
Step 7: Score normalization (calculate the mean and variance of 

scores involved in the ith test file, which are then 
Gaussianized by the derived mean and variance).  

 
3. UBS-SVM ANTI-MODEL (UBSSVM) 

 
This approach is based on Universal Background Support data-
selection and SVM (UBSSVM) anti-modeling [11], where a cosine 
kernel is used. We note that, during the SVM modeling process, 
only the support vector has an impact on the final classification 
performance. Also, care needs to be taken in building the SVM 
with only a few positive examples (enrollment speaker) and a large 
number of negative examples (imposter speaker) for a specific 
enrollment. If the positive and negative examples are not properly 
balanced, the final performance may be compromised. Our usual 
practice is to begin with an individual SVM model trained by using 
a fixed imposter background dataset with the assumption that the 
imposters share a common subspace. This is a natural assumption, 
but an unbalanced data set may produce an over-fitting hyper-plane 
for the enrollment speaker. To address this imbalance, an imposter 
dataset selection was proposed in [11] and adopted here: 
 
Step 1: Average the i-vectors of the jth enrollment speaker; 
Step 2: Follow the first 3 steps of [11]; 
Step 3: Score normalization (same as in Section 3). 

This approach utilizes information not only from limited 
available enrollment data, but also from a large amount of imposter 
data, which helps the verification decision when a non-target trial 
is encountered. 

 
4. L2-REGULARIZED LINEAR REGRESSION (L2LR) 

 
L2-regularized logistic regression (L2LR) was applied by means of 
the LIBLINEAR toolkit (the source code having been slightly 
modified for parallel computation) [15]. The classifier training 
method is one-versus-the-rest. In contrast to approaches in GCDS 
and UBSSVM, the i-vectors of each enrollment speaker were not 
averaged and LDA was not applied. The parameters of this 
classifier are optimized on the Dev-set by using the hill-climbing 
method. The scores are again normalized (same as in Sec. 3). 
      It is need to note that this approach only makes use of 
enrollment data to build the model for the target speaker, and no 3rd 
party imposter data is involved (That is, for a specific target 
speaker, all the other speakers’ data are used as imposter data).  
 

5. MULTI-SESSION PLDA (PLDA1, PLDA2) 
 
Traditionally, only one instance is available for each target speaker, 
where PLDA is the state-of-art back-end. We tested two methods 
of handling the multi-session case with PLDA. 
 
5.1. Before-scoring Average PLDA (PLDA1) 
 
The i-vectors of the jth enrollment speaker are grouped and 
averaged before applying PLDA to perform verification. This 
allows us to use the centroid of multiple instances of each speaker 
to average out the potential noise and/or channel mismatch. 

5.2. Post-scoring Average PLDA (PLDA2) 
 

Each i-vector of the target file is treated as if originated from a 
different speaker. After applying PLDA, scores of the ith test file 
against instances of jth enrollment speaker are averaged, and used 
as the likelihood score of the trial of ith test files coming from the 
jth speaker. This is equivalent to a majority vote on the decision 
with the hope that each individual sample/utterance captures some 
combination of the acoustic-based speaker characteristics and 
environment distortion. This basically can be understood as multi-
condition training and is an echo to the multi-condition preparation 
for the enrollment files, which is neglected in PLDA-1 in Sec. 5.2. 
 

6. BACK-END FUSION 
 
As noted in the previous sections, each back-end focuses on 
different data utilization. Some back-ends only use enrollment data 
and test data (GCDS, L2LR) for modeling, some back-ends use 
imposter data (UBSSVM), and other back-ends use similar data to 
learn the data variability and thus compensate for the environment 
mismatch (PLDA) in potential final trials. Table 1 summarizes the 
similarities and dissimilarities between the different back-ends. 
Table 1. Comparison of data usage among different back-ends. 

Back-end Need imposter 
data 

Uses 
LDA 

Feature 
Avg. 

Score 
Avg. 

GCDS Y Y Y N 
UBSSVM Y Y Y N 

L2LR N N Y N 
PLDA1 Y Y Y N 
PLDA2 Y Y N Y 
We observe that various back-ends differ in how much speaker 

information is utilized (whether using imposter data or full 
dimension) and how instances of each category are utilized (with 
or without averaging). Different information utilization contributes 
different discriminative modeling. Therefore, by fusion, we expect 
that the likelihood score will be reinforced more towards the 
correct decision, while contradictory decision will become less 
likely. We perform fusion using the linear-logistic regression 
algorithm from the BOSARIS toolkit [16].  

 
7. EXPERIMENT SETUP 

 
7.1. System Setup 
 
The speaker recognition task is developed to address the NIST 
SRE’12 [2] evaluation. The flowchart is illustrated in Fig 1. The 
difference of this task compared to conventional SRE is outlined as: 
(1) the test data is corrupted by additive noise, (2) test utterances 
have different durations (varying from 20s through 160s), (3) 
multiple samples for enrollment data are available, and (4) all 
enrollment data is allowed to be used for collective modeling.  
 
7.2. Front-end Processing 
 
We utilized two different acoustic features: (a) Mel frequency 
Cepstral coefficients (MFCC), MFCCs are normalized by quantile 
cepstral normalization (QCN) [17] and low-pass RASTA filtering 
[18], and (b) Rectangular Filter-bank Cepstral Coefficients (RFCC) 
[17], which are processed through feature warping [19]. All 
features are 39-dimensional (12 cepstral coefficients+C0+∆+∆∆). 
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Figure 1: i-vector based Speaker verification system block diagram. Data 1 and 2 correspond to raw feature data for UBM and Total 
Variability matrix, respectively. ‘Audio data’ means all the acoustic data involved for the verification task. 
 

7.3. I-Vector Extraction 
 
Gender dependent UBMs with 1024 mixtures are trained on 
telephone utterances (See Table 3 for details). For total variability 
matrix, T, the UBM training dataset and additional SRE-12 target 
speakers’ data in both clean and noisy versions are used. Five 
iterations are used for the EM training [20]. The i-vector dimension 
was set to 600. In the i-vector post-processing module, LDA was 
applied to reduce i-vector to 400 dimensions and then length 
normalization was applied (L2LR skipped this step; see Table 1). 
 

7.4. Experimental and Development Dataset 
 
To ensure a comprehensive evaluation, the proposed method will 
be tested on both male and female cases for two feature front-ends.  

 
7.4.1. Experimental Setup 

In preparing the development system, we maintained a close 
collaboration with the I4U consortium. The 1918 SRE’12 target 
speakers’ utterances are collected from SRE’06-10 and a train-test 
list pair is prepared for evaluation. The training list included 
multiple sessions per speaker and the test list included both known 
and unknown non-target speakers, following SRE’12 protocol 
(Table 2). The trials are designed based on the three criteria: I) 
train and test files are always from a different session, II) both 
telephone and microphone recordings are kept for enrollment, III) 
for each segment, 6dB and 15dB noisy versions are created. The 
noise sample is randomly chosen from a pool of HVAC and crowd 
noise files [20,23]. No same noise sample is used for train and test.  

 

Table 2. Number of speakers, segments and trials in the eval-set 
Gender No. speakers No. segments No. trials 

Train Test Train Test True False 
Male 763 804 29961 21837 15483 16646148 
Female 1155 1102 43119 28548 20763 32952177 

  
7.4.2. Development Dataset 

This dataset is constructed to assist the development of 
different back-ends, which involves different corpora. Specifically, 
the development dataset for PLDA-1 and 2 includes the UBM 
training dataset and the clean and noisy enroll speaker data. The 
UBS-SVM development data set includes only UBM data, which 
has no overlapping speaker data with the enrollment data. For the 
back-end of GCDS, UBM training data and the enrollment data 
(clean and noisy) are only used in Step 2 of the GCDS algorithm. 
L2LR does not need a development set with the aim to avoid 
potential information distortion coming with development sets. 
Table 3 summarizes how the corpora are used in different tasks. 

 
8. RESULTS AND ANALYSIS 

 
First, we want to validate the performance of GCDS, which is 
detailed in Table 4.  It is observed that score normalization can 
significantly enhance the  performance  in both classical CDS and  

Table 3. Corpora used to estimate the system components. ( Note: 
“X” means that data from this corpus was used) 

Corpora Switch- 
board 

SRE 
04 

SRE 
05 

SRE 
06 

SRE 
08 

SRE 
10 

SRE 
12 

UBM X X X X    
T X X X X X X  

Dev Dataset    X X X  
Eval  Dataset    X X X X 

LDA X X X X    
SVM-imposter X X X X    

 
Table 4. Performance comparison between classical CDS and 
GCDS. Relative Gain is computed between 5th and 6th column. 

Gender Back-end CDS GCDS CDS GCDS Gain  
Score Norm N N Y Y 

Male 
EER(%) 2.67 1.78 1.73 1.42 +17.9% 
minDCFx100 29.1 23.8 20.9 16.3 +22.0% 

Female 
EER(%) 3.60 2.41 2.29 1.87 +18.3% 
minDCFx100 37.2 30.5 27.2 21.3 +21.7% 

 
proposed GCDS. We also observe similar trends in L2LR and 
UBSSVM, so for all these three back-ends, score normalization is 
always used. Secondly, we can see that GCDS outperforms CDS 
significantly, which proves the validity of GCDS. 

The performances of the individual back-ends are shown in 
Fig. 2 using Detection Error Tradeoff (DET) curves. It may be 
noted that GCDS and PLDA-2 are very competitive in terms of 
EER. UBSSVM can offer the most competitive minDCF in both 
male and female cases. L2LR is inferior to the other three top 
back-ends (i.e., PLDA-2, GCDS. and UBSSVM). It, however, can 
provide a significant performance gain in fusion, especially for the 
minDCF measure, which is defined in [2]. 

From Table 5, we observe that the performances of the two 
individual front-ends are very similar (dark shaded area in Table 5). 
After introducing the four other back-ends, the discriminating 
capability is greatly enhanced for the individual i-vector system 
(light shaded area in Table 5). Compared with the MFCC+PLDA-
1-i-vector system, after the back-end expansion (MFCC + five 
back-ends i-vector systems), the EER and minDCF is relatively 
improved by 45.0% and 48.7% for the male condition, and 48.7% 
and 36.8% in the female condition (the average relative EER and 
minDCF improvement across gender is 46.9% and 37.2%; and the 
same comparison will be applied thereafter for all across gender 
cases for simplicity). This suggests that the proposed multisession 
enrollment processing in this study have a better discriminating 
capability learned from the available data, which is realized by 
using our alternate information modeling approach. 

To further verify the merits of different fusion approaches, we 
also summarize in Fig. 3 the relative gain of different fusion 
approaches against averaged PLDA-1 based individual front-ends 
(‘Avg.1’ in Table 5). It is noted that the front-end based fusion can 
relatively improve the EER and minDCF by around 16% for both  

VAD 
Raw Feature 

extraction UBM 

UB

Total Variability 
Matrix 

 

i-vector post-
processing 

PLDA1 

GCDS 
L2LR 

UBSSVM Score 
Processing 

PLDA2 

Audio Data 

Front-end Back-end 

Scores 

Data 1 Data 2 
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Table 5. Performance comparison of individual front-end/back-end systems and different fusion combination systems. ‘All-1’ indicates a 
fusion system based on all  two front-ends with back-end 1 (PLDA1).’All-All’ indicate the fusion is based on all  two front-ends with all five 
back-ends (total 2 X 5 systems). ‘Avg.1’ is the average performance of back-end 1-based single front-end (dark shaded area) 
systems. ’Avg.2’ is the average performance of the back-end-based fusion system (light shaded area).’Gain 1’, ‘Gain 2’, and ‘Gain 3’  are 
the relative gains obtained from ‘All-1’ vs. ‘Avg.1’, ‘Avg.2’ vs.’Avg-1’, and ‘All-All’ vs. ‘All-1’, respectively. Back-ends 1~5 are  the five 
back-ends, corresponding to: PLDA1, GCDS, L2LR, UBSSVM, and PLDA2, respectively. minDCF is defined in [2]. 

Gender Front-end MFCC RFCC Avg.1 All- 1 MFCC RFCC Avg.2 All-All Gain 1  
(%) 

Gain 2  
(%) 

Gain 3  
(%) Back-end PLDA1 PLDA1 1~5 1~5 

Male EER(%) 1.80 1.93 1.87 1.56 0.99 1.03 1.01 0.74 16.6 46.0 52.6 
minDCFx100 18.9 19.9 19.4 16.3 11.8 10.6 11.2 8.88 16.0 42.3 49.0 

Female EER(%) 2.69 2.37 2.53 2.12 1.38 1.03 1.21 0.84 16.2 52.2 60.4 
minDCFx100 25.0 23.8 24.4 21.1 15.8 12.6 14.2 10.6 13.5 41.8 49.8 

 
Figure 2: DET plot for male (Left) and female (Right) condition. Numbers in parentheses are EER (%) and minDCF (x100), respectively. 
 

 
Figure 3: Relative gain of different fusion combinations vs. 
averaged individual front-end performance metrics (based on 
back-end 1: PLDA1). Gain 1~3 come from Table 5. 
 
genders. However, this benefit is acquired at a high computation 
cost for i-vector extraction, which involves raw feature extraction, 
UBM training, total variability matrix and i-vector extraction for 
each front-end involving thousands of audio files. Compared with 
the averaged single front-end and back-end case (‘Avg.1’ in Table 
5), fusion based on multiple back-ends but a single front-end 
performs much better, obtaining a relative gain  (Gain 2) of 49% 
and 42% in EER and minDCF,  respectively. Finally, when two 
front-ends and five back-ends are combined, we have a fusion of  
ten systems providing a relative gain (Gain 3) of 56.5% and 49.4%, 
in EER and minDCF, compared to the case ‘Avg.1’ in Table 5, 
where extra 7% gain against Gain 2 comes from the different 
feature, which is very limited due to the similar signal processing 
procedure behind them. 

9. CONCLUSION 
 
An information organization-based back-end fusion framework 
was proposed to fully explore the patterns present in the speaker ID 
development data. We considered the difficult real-life scenario of 
speaker recognition when the test utterances are noisy and of 
varying duration, similar to what is posed by NIST SRE 2012. For 
addressing noise and channel mismatch, robust front-end 
processing is an obvious necessity. In this study, for an i-vector 
based system, we demonstrated that by properly designing 
different back-end classifiers and subsequent fusion, a much 
greater benefit can be achieved compared to the scenario when 
multiple front-end features but one backend is utilized for the 
system fusion. Consistent and significant performance gains were 
obtained from the proposed strategy, which proves the validity of 
the methods presented. It is also noted that the proposed GCDS 
performs significantly better than the classical CDS in the current 
multisession enrollment verification experiment. 
 

10. RELATION TO PRIOR WORK 

This work is based on the methods proposed in [5-8, 11-12], which 
are adapted here to handle the new multi-session SRE-12 scenarios. 
Specifically, GCDS is based on CDS but far outperforms the latter. 
PLDA1 is similar with traditional PLDA [6] and is taken as the 
back-end baseline. PLDA2 is a modification of traditional PLDA 
scoring, and is also shown to outperform the traditional approach. 
This works is also aiming at extending the endeavor of [22]. 
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