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ABSTRACT

Overlapping speech is a source of significant errors in speaker di-

arization of spontaneous meeting recordings. Recent works on

speaker diarization have attempted to solve the problem of overlap

detection using classifiers trained on acoustic and spatial features.

This paper proposes a method to improve the short-term spectral

feature based overlap detector by incorporating information from

long-term conversational features in the form of speaker change

statistics. The statistics are obtained at segment level(around few

seconds) from the output of a diarization system. The approach is

motivated by the observation that segments containing more speaker

changes are more probable to have more overlaps. Experiments on

AMI meeting corpus reveal that the number of overlaps in a segment

follows a Poisson distribution whose rate is directly proportional to

the number of speaker changes in the segment. When this infor-

mation is combined with acoustic information in an HMM/GMM

overlap detector, improvements are verified in terms of F-measure

and consequently, diarization error (DER) is reduced by 5% relative

to the baseline overlap detector.

Index Terms— speaker diarization, spontaneous conversations,

meetings, spontaneous overlapping speech.

1. INTRODUCTION

Speaker diarization, the task of inferring “who spoke when” in an

audio recording has evolved over the years from broadcast news do-

main to spontaneous meeting recordings [1, 2]. Spontaneous con-

versations such as meetings have significant proportion of speech

from simultaneous speakers (overlaps) which creates difficulties for

automatic systems processing such data [3]. Studies on speaker di-

arization have shown that overlaps are one of the significant source

of the errors [4, 5, 1, 6]. Presence of overlaps in clustering corrupts

the models as they contain speech from multiple speakers and, this

increases the clustering error. Also, since a typical diarization sys-

tem hypothesizes only a single speaker at each instant of a recording,

in the case of overlaps, this results in missed speech error for at least

one speaker. Motivated by these factors, a mechanism to handle

overlaps in meetings has been proposed in [7]. Several recent works

on speaker diarization have explored various features and methods

for detecting overlaps. In [8], authors explored various features such

as energy and short-term spectral features (MFCC) for overlap de-

tection. In [9, 10], authors investigated the use of spatial features

estimated from time delay of arrival (TDOA) of speech using mul-

tiple distant microphones. Also, the use of prosodic features [11]

has shown improvements over MFCC. Recently, convolutive non-

negative sparse coding based methods have been explored for over-

lap detection with encouraging results [12, 13, 14].

All the above mentioned works are based on acoustic informa-

tion and do not exploit higher level information in conversations

which carries useful cues for overlap detection. Studies on meet-

ing conversations have shown that overlaps are more likely to oc-

cur at some specific locations such as turn exchanges and back-

channels [15] and 73% of overlaps occur at end of speaker turns [15].

In [16], authors have tried to address this issue by incorporating in-

formation from speech/silence statistics at segment level to improve

overlap detection. Experiments on AMI meetings [17] have revealed

that probability of occurrence of overlap in a segment is inversely

proportional to the amount of silence in the segment [16] and in-

corporating this information into the feature based classifier has im-

proved its performance and consequently reduced diarization error.

Current work performs a similar study to that of the work done

in [16], but explores the usefulness of conversational features such

as speaker change statistics to predict overlap in a segment. The

statistics are computed from a long-term segment with a length of

few seconds. The approach is motivated from our observation that

segments containing more speaker changes tend to have more over-

laps. Speaker changes have been used previously to deal with over-

laps. In [18], a two-pass diarization system was used, where speech

around speaker changes obtained from first pass was used to train

an overlap model which was used in the second pass to handle over-

laps. In the current work, instead of training an overlap model, we

use speaker change statistics in a segment obtained from first pass

of diarization to estimate the probability of overlap in that segment

and these probabilities are incorporated into the baseline detector as

prior probabilities. We perform experiments on meetings from AMI

corpus and show that the proposed method improves overlap detec-

tion and consequently speaker diarization. The rest of the paper is

organized as follows, section 2 presents briefly state-of-the-art base-

line speaker diarization and overlap detection systems. Section 3 de-

scribes the proposed method for estimating the probability of single

speaker speech and overlap; furthermore it proposes a way of in-

corporating them into baseline overlap detector. Section 4 describes

the experimental results on overlap detection and speaker diarization

and section 5 concludes the paper.

2. BASELINE SYSTEMS

2.1. Baseline speaker diarization system

Speaker diarization system used in the current work is based on a

non-parametric bottom-up agglomerative framework [19]. The di-

arization output assigns each speech segment to a unique cluster

(speaker) in the output. The system is evaluated using the metric

known as the Diarization Error Rate (DER) which is the sum of

speech/non-speech error and speaker error. Speech/non-speech er-

7746978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



ror is the sum of miss and false alarm errors. Speaker errors are

clustering errors happening whenever speech segments of a speaker

are attributed to a different one. This metric has been used in several

NIST Rich Transcription evaluation campaigns [2].

2.2. Baseline overlap detection system

Overlap detection is typically done using an HMM/GMM system

with two states, one representing speech class (speech from a single

speaker) and the other representing the overlap class (speech from

multiple speakers) [8, 11]. The emission probabilities of the states

are modelled by GMMs with diagonal covariance trained using 12

dimensional MFCC features and energy along with deltas. The fea-

tures are mean and variance normalized. A minimum duration con-

straint is imposed on each HMM state. Furthermore, an overlap in-

sertion penalty is introduced to control the trade-off between misses

and false alarms [8, 11] which affect DER differently. The optimal

value of the penalty is obtained by tuning on a separate data set. This

system will be referred to as baseline overlap detector from here af-

ter.

Let V denote the sequence of single-speaker, overlapping

speech states and X denote the sequence of acoustic features;

the baseline overlap classifier infers the most probable sequence of

states by Viterbi decoding as:

V
∗ = argmax

V

P (V |X) = argmax
V

P (X|V )P (V ) (1)

The prior probability P (V ) can significantly change from one

recording to another, as well as within the same recording (for

instance presentations and monologues contain less overlap than

discussions) [3]. But, in the baseline overlap detector, the prior

probability of a class is fixed within and across the meetings, which

is obtained based on the proportion of samples observed in each

class in the training data. Current work tries to address this issue by

estimating the prior probabilities from conversational features such

as speaker change statistics from a long-term context.

3. OVERLAP DETECTION BY CONVERSATIONAL

FEATURES

Studies on conversational analysis have shown that overlaps tend to

occur more often at some specific parts of conversations than the

remaining parts [15]. Especially it was shown that significant pro-

portion of the overlaps occur during speaker turn changes [15]. Mo-

tivated by these studies, the current work analyzes the relationship

between the occurrence of overlap in a segment and the number of

speaker changes in the segment. Specifically, the study hypothesizes

that overlap probability in a segment is directly proportional to the

number of speaker changes in the segment i.e, segments contain-

ing more speaker changes are highly probable to have more number

of overlaps than those having less changes. To verify this hypothe-

sis, experiments are conducted on AMI meeting corpus [17] which

contains multi-party meeting recordings collected in multiple meet-

ing room environments. The corpus was divided into two halves

of train and test set for the experiments. In the first experiment,

the distribution of the number of overlaps is analyzed for different

number of speaker changes in a segment of given length. In the

current study, an occurrence of overlap is defined as a contiguous

segment of overlapped speech surrounded by single-speaker speech

or silence regions and the number of overlaps is obtained by count-

ing such occurrences. Let sc, nov denote the variables indicating

number of speaker changes and overlaps respectively in a segment
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Fig. 1. Probability distributions of number of occurrences of over-

laps (nov) for different number of speaker changes (y) obtained us-

ing ground truth segmentation and diarization output.

of given length, ns(sc = y) denotes the number of segments of

length s seconds which contain y number of speaker changes and,

ns(nov = k, sc = y) denotes the number of segments containing

k number of overlaps and y speaker changes. Then, the probability

of having k number of overlaps in a segment of length s seconds

conditioned on the fact that it contains y number of speaker changes

P s(nov = k|sc = y) can be obtained as,

P
s(nov = k|sc = y) =

ns(nov = k, sc = y)

ns(sc = y)
(2)

Fig. 1 shows the distribution (P s(nov|sc = y)) of the number of

overlaps in segments of length five seconds (s = 5) for different

number of speaker changes (y). The speaker changes are obtained

from the ground truth speaker segmentation and diarization output

for left and right subplots respectively. It can be observed from

Fig. 1 that, as the number of speaker changes increases, the prob-

ability of occurrence of more overlaps also increases. Also, it can

be observed that distributions, P s(nov|sc = y) for different y seem

to follow a Poisson distribution with a rate that is directly propor-

tional to the number of speaker changes (y). Speaker changes in the

diarization output are fewer when compared to ground truth speaker

segmentation due to constraints and errors introduced by the auto-

matic system. Nevertheless, similar phenomenon can be observed

for distributions estimated from diarization output also. Fig. 1 sup-

ports our hypothesis that segments containing more speaker changes

contain more overlaps. This information can be useful when incor-

porated into the baseline overlap detector which is based on acoustic

features, as it does not contain evidence from the conversational pat-

terns in the meetings.

Motivated from the empirical distributions in the Fig. 1, we

model the probability of number of occurrences of overlaps in a

given segment by a Poisson distribution whose rate depends on the

number of speaker changes in the segment i.e.,

P
s(nov = k|y) =

(λs
y)

ke−λs
y

k!
(3)

where, the rate parameter λs
y is a maximum likelihood estimate from

the training set of meetings which is simply the mean of the number
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of occurrences of overlaps in segments of length s seconds which

contain y number of speaker changes. After estimating the set of

rate parameters λs
y for different values of y, the probability of occur-

rence of overlap in a segment conditioned on the number of speaker

changes in the segment can be obtained as,

P
s(ov|y) = 1− P s(nov = 0|y) (4)

= 1− e−λs
y (5)

and, the probability of single speaker speech can be obtained as,

P
s(sp|y) = 1− P s(ov|y) (6)

= e−λs
y . (7)

To compute these statistics for the whole recording, the segment

is progressively shifted by one frame at each step and probabilities

P s(ovi|yi) and P s(spi|yi) are estimated ∀i where i ∈ {1 . . . N}
and N is the total number of frames in the file and yi is the number

of speaker changes in the segment centered around frame i. This

process is depicted in Figure 2.
To verify how the estimated probabilities P s(ovi|yi), P

s(spi|yi)
generalize on test set of meetings different from those used for es-
timating the rate parameters, cross entropy between these estimated
probabilities and test distribution was computed. The probabilities
for the test distribution are obtained for each frame i ∈ {1 . . . N}
as follows, P t(ovi) = 1, P t(spi) = 0 if the frame i is overlapped

(i ∈ {OV }) and P t(spi) = 1, P t(ovi) = 0 if the frame i is single-
speaker speech (i ∈ {SP}). The knowledge of whether a frame i
belongs to the set {OV } or {SP} is obtained from the ground-truth
segmentation of the test set of meetings. The cross entropy between
the test distribution and the estimated distribution is computed as
follows.

C(s) =−
1

L

(

∑

i∈{OV }

log(P s(ovi|yi)) +
∑

j∈{SP}

log(P s(spj |yj))

)

(8)

where, L is the total number of frames used in the computation. To

eliminate the bias in the measure due to uneven number of samples

present in single-speaker speech and overlap classes, the cross en-

tropy measure is computed by considering equal number of samples

from each class.

Fig. 3 (left plot) shows cross entropy measure for test set of

meetings from AMI meeting corpus when different segment lengths

(s) are used for estimating the probabilities P s(nov = k|y). It can

be observed from Fig. 3 (left plot) that the cross entropy reduces with

increase in segment length (context around frame) thus indicating

that the estimated probabilities are more closer to the real ones when

the length of the context increases and reaches an optimum at the

segment length of three seconds. We have also computed the cross

entropy measure on meetings from RT09-eval set to verify whether

the estimated statistics are corpus specific. The probability estimates

P (ovi|yi), P (spi|yi) for RT09-eval set are estimated using the rate

parameters {λs
y} obtained from the training set of meetings in AMI

corpus. Fig. 3 (right plot) plots the cross entropy measure for RT09-

eval meeting set and shows similar trend to that of Fig. 3 (left plot).

This shows that the estimated statistics are not specific to the AMI

corpus and are generalizable to multi-party meetings in general.

Incorporating this information into the baseline HMM/GMM

overlap detector described in (1) is straightforward. If V = {vi} =
{spi, ovi} stands for the sequence of states single-speech/overlap,

X = {xi} the sequence of acoustic vectors and Y = {yi} the se-

quence of number of speaker changes in segment centered around

  .............   ........

Estimates from train

              data

s1

i

s2 si sN

yi
P (ovi|yi),

P (spi|yi)

(1− P (ovi|yi))
{λs

yi
}

Fig. 2. Estimation of probabilities of single-speech and overlap

states for a frame i based on number of speaker changes yi present

in the segment si centered around the frame i.
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Fig. 3. Cross entropy measure for various segment lengths on AMI

meetings and RT09-eval set of meetings.

frame i, the optimal single-speech/overlap segmentation can be ob-

tained by Viterbi decoding as:

argmax
V

P (V |X, Y ) = argmax
V

P (X|V, Y )P (V |Y )

≃ argmax
V

P (X|V )P (V |Y ) (9)

In (9) it is assumed that the observed features X are independent

of number of speaker changes Y given the state V . In other words,

the information from the acoustic features P (X|V ) is combined to-

gether with P (V |Y ) which estimates how probable an overlap is

given the number of speaker changes Y in the segment. Further-

more P (V |Y ) is estimated from a long temporal window (three sec-

onds) and thus includes information from long-term conversational

features in the form of number of speaker changes in the window. In

the current study the probabilities P (V |Y ) are estimated using the

rate parameters obtained from the automatic diarization output.

4. EXPERIMENTS AND RESULTS

Overlap detection and speaker diarization experiments are conducted

on meeting recordings in AMI meeting corpus [17]. The audio cap-

tured by multiple distant microphones is enhanced by beamforming

using the BeamformIt toolkit [20]. Two disjoint sets of meetings for

training and testing are created each consisting of 35 and 25 meet-

ings respectively by random picking while the remaining meetings

are used for estimating the rate parameters {λs
y}. Both the train and

test sets contain recordings from all the meeting sites and ground

truth speaker times obtained from ASR force-aligned manual tran-

scriptions. The proposed method is compared to the baseline overlap

detection system based on short-term spectral features in two tasks;

overlapping speech detection and overlapping speech diarization.
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4.1. Experiments on Overlap detection

Performances of the overlap detectors are compared in terms of Re-

call, Precision and F-measure. Figure 4 (a) plots the f-measures of

the baseline overlap detector and the overlap detector incorporating

speaker change statistics as a function of different overlap insertion

penalties (OIP). It can be observed from Fig. 4 (a) that the system
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Fig. 4. Performance of overlap detectors for different overlap inser-

tion penalties (OIP). (a) F-measures of baseline detector, and detec-

tor based on speaker changes obtained from diarization output. (b)

Precision (dashed line), Recall (solid line) for classifiers

incorporating information about speaker changes has better perfor-

mance than baseline system for all penalties. Furthermore Fig. 4 (b)

plots the precision and recall for the two systems for different penal-

ties. It can be observed that proposed approach improves the recall

of the detector without any degradation in the precision which is de-

sirable for overlap handling in speaker diarization. Similar improve-

ments in overlap detection are observed in the case of RT09-eval

meetings also.

4.2. Experiments on overlap speaker diarization

Once overlaps are detected, two strategies have been proposed in lit-

erature to handle it and are referred to as overlap exclusion and over-

lap labelling [7]. In overlap exclusion, prior to clustering, an over-

lap detection is performed and the detected segments are excluded

from the clustering step in order to avoid GMM corruption. Once

the final clustering is obtained, the excluded regions are assigned

to a speaker by the Viterbi realignment decoder. Overlap exclusion

reduces the total speaker error [7, 8, 11]. In overlap labelling, the

handling happens after the diarization system is run by labelling the

overlap segments with two speakers. This step can be performed

according to two strategies: in the first one an overlap segment is

assigned to the two nearest speakers in time [7], while in the second,

they are assigned to two speakers with highest posterior probability

in these regions [8]. Overlap labelling reduces the missed speech

error [7, 8, 11].

Table 1 (first row) shows DER of 30.4 for the speaker diariza-

tion system without any overlap handling as described in [19]. Let

us now compare the results obtained by the baseline overlap detector

and the proposed system which exploits information from speaker

changes on three tasks overlap exclusion, labelling and both. As

proposed in the previous works [9, 8, 14, 16], two different operating

points were chosen for exclusion and labelling tasks as they have dif-

ferent effects on DER. For exclusion a high recall point was chosen

at the OIP of 0 and for labelling, a high precision point was chosen at

the OIP of 90. The penalties were obtained by tuning on a separate

development set of meetings and were kept constant for both sys-

tems. Overlap labelling for baseline and proposed method is done

based on 2-nearest speaker strategy as proposed in [7]. It can be ob-

served from Table 1 (third and fourth rows) that the proposed system

has lower DER than the baseline system on all the three tasks. When

both exclusion and labelling are done, the proposed method achieves

about 5% relative DER reduction (from 25.5% to 24.2%). The im-

provement is particularly large in case of exclusion (from 26.2% to

24.6%). As the penalty term (OIP) is same for both the systems, the

reduction in DERs can be attributed to the proposed incorporation of

prior probability estimates from speaker change statistics.

Table 1. DERs for various systems on test set with relative improve-

ments over the diarization system with no overlap handling within

parenthesis.

No overlap handling 30.4

System Exclusion Labelling Both

Baseline 26.2 (13.8%) 29.7 (2.3%) 25.5 (16.1%)

Spkrch 24.6 (19.1%) 29.5 (2.9%) 24.2 (20.4%)

5. CONCLUSIONS AND FUTURE WORK

This paper proposed a method for estimating the probability of over-

lapping speech based on a longer context than a frame at a segment

level, based on number of speaker changes in the segment. Speaker

changes are obtained from automatic segmentation from the diariza-

tion output. Experiments on the AMI corpus revealed that the prob-

ability of having overlap in a segment is directly proportional to the

number of speaker changes in it. Empirical distributions of number

overlaps in a given segment have been shown to follow a Poisson dis-

tribution with a rate directly proportional to the number of speaker

changes in the segment. The cross entropy measure revealed that

probabilities estimated from a segment length of approximately three

seconds minimizes the cross entropy on a separate test data set. The

study also revealed that the estimated probabilities generalize to a

completely different data set of meetings (RT09-eval). Furthermore,

a method to include these statistics in a conventional HMM/GMM

overlap detector by combining this information with acoustic fea-

tures was proposed. Experimental results revealed that the proposed

method outperforms the conventional overlap detector in terms of

F-measure for all possible operating points. Whenever the detected

overlap is used in speaker diarization for performing labelling and

exclusion tasks, the DER is reduced by almost 5% relative to base-

line feature based overlap detector from 25.5% to 24.2%.

As part of future work, we will explore other relevant conver-

sational features which can be easily extracted automatically and

which are correlated with overlaps in spontaneous meetings. Also,

we will explore novel methods to combine estimates of the prior

probabilities obtained from the conversational features such as the

ones proposed in [16] and the current work to exploit any comple-

mentary information captured by them.
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