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ABSTRACT

In this paper, we introduce the concept of the effective sample size
to speaker diarization and recognition. We show why the use of
the nominal sample size is inadequate to feature streams that exhibit
inter-frame correlations and how it adversely affects inference. We
then discuss the effective sample size, that is the sample size of a
set of independent observations that carry the equivalent amount of
statistical information about the model parameters and how the scal-
ing factor can be estimated. Our experiments on speaker diarization
show that once the effective sample size is adopted, state-of-the-art
results can be attained even with single Gaussians and Hierarchical
Clustering, and even when the scaling factor is set to be common
for all utterances. On speaker recognition, encouraging results are
reported on NIST-2010 using iVectors and PLDA.

Index Terms— Speaker recognition, Clustering methods,
Bayesian methods

1. INTRODUCTION

Contemporary research in speaker recognition and diarization as-
sumes a Gaussian Mixture Model (GMM) as the generative model
of an utterance and focuses on methods to increase the robustness of
the estimate of the components’ mean values. The iVector represen-
tation has been proven to be a very effective way to towards robust
estimation, [1]. Having fixed a powerful representation for utter-
ances and speakers, much effort is currently given to quantify the
uncertainly in the point-estimates. In [2], a fully Bayesian approach
is considered, where the model parameters of PLDA are treated as
random variables and therefore integrated out. In [3], the uncertainty
in the iVector point-estimate is not discarded, but propagated to the
PLDA model. In speaker diarization, where speech segments can be
very sort and clusters are of variable duration, several approaches to
quantify the uncertainty and use it in order to make a fully or semi-
Bayesian treatment of model’s order selection possible have been
attempted, [4], [5].
When modeling the uncertainty, though, a key-issue that needs to
be reconsidered is the independent assumption regarding the front-
end features (e.g. MFCC). It is well known and fairly easy to verify
that this assumption is false. However, the results of treating them
as if they were indeed independent have been underestimated by the
speaker recognition and diarization community. Literature in other
fields shows that if the nominal sample size is used, the uncertainty
of the random variables would be smaller than its actual, [6], [7].
This not only leads to a poor estimate of the posterior expectation of
the variable in question (i.e. the point-estimates). More importantly,
it causes severe degradation in several model’s order selection tasks,
including the estimation of number of speakers in diarization, bad
calibration of log-likelihood ratios (LLRs) in speaker recognition,

and failure of BIC-like criteria in diarization and segmentation. And
as we show in the speaker diarization section, there are cases where
quantifying the uncertainty properly is at least equally crucial to ob-
taining complex point-estimates about the true probability distribu-
tion of a speaker.
The rest of the paper is organized as follows. In Sect. 2, the con-
cept of the effective sample size (ESS) is introduced along with the
issues arising from a naive use of the nominal one. In Sect. 3, a
Bayesian approach to speaker diarization is described and experi-
ments are given based on the ETAPE contest. In Sect. 4, the way
to incorporate the ESS into the iVector extractor is presented and re-
sults are given on NIST2010 data. Finally, conclusions and future
work are discussed in Sect. 5, including a formal method to estimate
the ESS.

2. INTER-FRAME CORRELATIONS AND EFFECTIVE
SAMPLE SIZE

2.1. How inter-frame correlations adversely affect estimators

To gain some intuition about the need of the notion of the ESS let
us start by giving an elementary example. Assume the task of es-
timating the mean µ of a speech segment, in some feature space.
A typical feature extractor for speaker and speech recognition (e.g.
MFCC) extracts one feature vector every 10ms. From statistical the-
ory, it is well known that the variance V (µ̂) of an estimate µ̂ of µ is
reciprocal to the number of observation vectors. Hence, would it be
unreasonable to ask why not increasing the frame rate to one feature
vector every 1ms and reduce the variance of the estimator by a factor
of 10?
The reason why this increase would not be effective is that by doing
so, the inter-frame correlation will increase as well. Once a cer-
tain frame rate is exceeded, no further decrease in V (µ̂) can be at-
tained, [6]. In order to obtain a fixed frame rate, the speech and
speaker communities concluded that the 10ms frame rate is suffi-
cient on average. However, even with the standard frame rate of
10ms, a high degree of inter-frame correlation appears between ob-
servation vectors. And unless this correlation is taken into account,
several artifacts in estimation and inference would appear.

2.2. The problems with overconfident estimators

2.2.1. The use of BIC in speaker diarization

A domain where a reliable measure the confidence of estimators
plays a crucial role is model order selection criteria. Although
closed-form expressions will be used in the experiments on diariza-
tion, the Bayesian Information Criterion (BIC) serves as a proper
introductory example to present the main idea, due to its simplic-
ity, [8], [9]. Consider an audio file of n frames, assume an initial
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segmentation into N segments and let two segments be ya and yb,
of na and nb sample sizes, respectively. Assume we model each
speaker by a single Gaussian, denoted by θ = (µ,Σ) and having
P = d+ d(d+ 1)/2 free parameters. The familiar ∆BIC approxi-
mation to the log-likelihood ratio (LLR) between the two hypotheses
(namely H1: two different speakers and H0: a single speaker) is as
follows

∆BICya,yb = l(θ̃a|ya) + l(θ̃b|yb)− l(θ̃a∪b|ya∪b)−
λ

2
PT ({nt})

(1)
In the above expression, l(θ̃a|ya) = na l̄(θ̃a|ya), l̄(θ̃a|ya) =
1
na

∑na
i=1 log p(y

(i)
a |θ̃a) and θ̃a the MAP estimate of θa, although

maximum likelihood (ML) estimates θ̂a are used more often.
The most common setting is the so-called local-BIC (see [10]),
where T ({nt}) = log(na + nb), although other settings have been
proposed, namely the global-BIC, where T ({nt}) = logn and the
segmental-BIC, where T ({nt}) = logna + lognb − log(na +
nb), [11].

2.2.2. A consequence of using the nominal sample sizes

It is well known amongst diarization community that ∆BIC with
λ = 1 will hardly merge any segments. Hence, the fudge fac-
tor λ > 1 is placed in order to boost the penalty term over the
likelihood ones. However, such a fudge factor lacks of any coher-
ent bayesian interpretation. Using the Laplace approximation to the
marginal likelihood, it can be proven that such a fudge factor implies
a prior on θ that is sample size dependent, [9]. However, such priors
are rejected by the bayesian community.
Let us show why this failure is a results of the use of the nominal
sample sizes. Recall that in BIC with ML, the uncertainly in the esti-
mates appears only via (na, nb). For given na and nb, and consider-
ing the high inter-frame correlation in speech signals, any statistical
test (including ∆BIC) would conclude that the discrepancy between
θ̂a and θ̂b (e.g. Kullback-Leibler divergence, DKL(θ̂a : θ̂b)) is too
large for ya and yb to be regarded as outcomes of a single distribu-
tion, θa∪b, even in cases whereH0 holds. This is due to the fact that
the estimator becomes too confident about θ̂a and θ̂b, due of the use
of the nominal sample sizes. In other words, the artificial boost of
the penalty term by λ > 1 aims to compensate for the artificial boost
in the precision of the estimator, caused by the use of the nominal
sample size.
Therefore, the natural way to tackle this problem is not by boosting
the penalty term, but by using the effective sample sizes rna and rnb

in the likelihood and penalty terms, where 0 < r ≤ 1 denotes the
scaling factor. By doing so, despite the fact that the point-estimates
of θ̂a and θ̂b would remain unchanged (and therefore their discrep-
ancy DKL(θ̂a : θ̂b)), the uncertainty in those estimates would be
r−1 times higher, making theH0 hypothesis more plausible.

2.2.3. MAP estimates and posterior expectations

In the case of MAP estimates and/or posterior expectations, the use
of na instead of rna has an additional undesired property. As na

grows, the observations ya overwrite the information carried in the
prior of θa in a faster rate than the optimal. Hence, in order for the
prior to be effective on the posterior, one should use priors that are
more sharp around θ0. However, a prior cannot be arbitrarily sharp
(i.e. informative), but it has to reflect our prior beliefs that are ideally
based on training data. Therefore, the use of the nominal sample size
in correlated data leads to point-estimates on which the actual data
overwrites the prior faster than it should. The following experiments

with iVectors in speaker recognition and with the use of the prior on
the partition space in diarization verify this claim.

3. INCORPORATING THE EFFECTIVE SAMPLE SIZE IN
SPEAKER DIARIZATION

In this chapter we show how to take into account the effective sample
size into modeling. We will demonstrate how a baseline algorithm
and crude modeling of the speaker pdf can become highly competi-
tive, only by using the ESS scaling.

3.1. The hierarchical clustering algorithm for Speaker Diariza-
tion

In this section we demonstrate the algorithm that we submitted to
ETAPE diarization contest, [13]. This approach, despite the use of a
rather crude distribution (a single Gaussian with full-covariance ma-
trix on a 19-dim static-only MFCC space) to model each speaker and
a baseline algorithm (Agglomerative Hierarchical Clustering, AHC)
was ranked amongst the top of the contest.

3.1.1. Notation and modeling assumptions

The goal is to maximize the posterior of (s,K) given the data y =

{y(i)}ni=1, where s = {s(i)}ni=1, s
(i) = 1, 2, . . . is the assignment

of frames to speakers and K the number of speakers. The posterior
is decomposed as follows

P (s,K|y,M) ∝ p(y|s,K,Me)P (s,K|Mt) (2)

where M = (Me,Mt) the set of hyperparameters. The term
p(y|s,K,Me) is the marginal likelihood, conditioned on a par-
tition s of the data, and is the statistical quantity that all ∆BIC
approaches try to maximize. The other term, P (s,K|Mt) =
P (s|K,Mt)P (K) is the prior over partitions s ∈ Sn. Although
we did not include it in our ETAPE submission, we will use it in
order to penalize partitions with fast changes between speakers.
In order to do so, we assume that the overall model is an HMM
with gaussian as emission, states correspond to speakers, and s
corresponds to the state sequence. By integrating out the transition
probability matrix and the entry probabilities using Dirichlet priors,
we end-up with a closed-form expression that places low proba-
bility to those partitions with fast changes. The hyperparameters
Mt = (αs, αt) represent self-transitions and transitions to other
states, by which the Dirichlet priors are parametrized with. The
expression of the prior can be found in [12].
For the kth speaker parameters (µk,Σk), a Normal - Inverse Wishart
conjugate prior is attached to each Gaussian, i.e.

(µk,Σk) ∼ N (µ0,
1

ν
Σ0)IW(Ψ, p) (3)

whereMe = (µ0,Ψ, ν, p) are the model hyperparameters that de-
note mean, covariance, number of virtual observations for the Nor-
mal prior and degrees of freedom (dof) for the Inverse-Wishart prior,
respectively. Let 0 < r ≤ 1 be the scaling factor, due to autocorre-
lation of the features. By integrating out (µk,Σk) we obtain

p(yk|Me) =

(
ν

rnk + ν

) d
2

π−
rnkd

2
|Ψ|

p
2

|Ψ + Pk|
rnk+p

2

Γd( p+rnk
2

)

Γd( p
2
)

(4)
where

Pk = r
∑

i:s(i)=k

(y(i) − µ0)(y(i) − µ0)T (5)
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and Γd(·) the d-variate Gamma function. Finally, the overall
marginal likelihood is given by p(y|s,K,Me) =

∏K
k=1 p(yk|Me).

3.1.2. Estimating the partition with Hierarchical Clustering

To maximize P (s,K|y,M) with respect to (s,K), the standard
AHC is used. Note that when maximizing, we only consider K =
max(s). However, all events (s,K) for which K ≥ max(s) have
nonzero probability. A partition s can be the outcome of a Markov
model with K ≥ max(s) number of states.
Focusing on maximizing only p(y|s,K,M) with AHC, the similar-
ity between ya and yb is defined by

LLRya,yb = log p(ya|Me) + log p(yb|Me)− log p(ya∪b|Me)
(6)

where each term is defined in eq. (4). Note that this is the closed-
form expression of the ∆BIC test discussed above. Moreover, by
considering the Laplace approximation to p(yk|Me), one may ver-
ify that it corresponds to the segmental-BIC. Both other settings im-
ply sample-size dependent priors, even when λ = 1, [12].

3.1.3. Two notes regarding the prior on partitions

To incorporate the partition prior into the AHC algorithm, we should
be estimating the probability of s′ , where s′ the partition after merg-
ing a pair of clusters, for every single iteration and pair. Since this
procedure can be time consuming, we proceed as follows. For each
iteration, theNp pairs having the smaller LLR (without including the
partition prior) are found and their LLRs are stored (Np = 5 is suffi-
cient). These Np pairs will be the candidates for merging. Then, for
the candidate pairs, the difference between the prior log-probability
of the current partition (which is common to all pairs, given the it-
eration count) minus the prior log-probability of s′ is calculated and
added to the corresponding LLRs. The LLRs - that are now aug-
mented with the partition prior - are sorted again and the first pair in
the rank is merged if and only if LLR< 0.
It is interesting to note that the values of the prior would have been
negligible compared to those of p(y|s,K,Me), unless the ESS was
used in the latter expression. By using the nominal sample sizes,
the likelihood terms tend to dominate completely the posterior of the
partition, due to the artificial boost in confidence in the estimates of
{µk,Σk}Kk=1, caused by the use of the nominal sample sizes. And
as the experiments show, the role of the partition prior is crucial, be-
cause it reduces significantly the number of short segments that are
falsely creating new speakers.

3.2. Experimental results

We submitted the algorithm to the ETAPE contest for speaker di-
arization, as CRIM’s secondary system, [13]. The ETAPE is the
continuation of the ESTER contests, and is based on broadcasts from
several french TV and radio stations. The development (DEV) and
evaluation (EVAL) sets consists of 15 shows each, with durations
ranging from 10 to 60 minutes. The corpus is divided into two sets,
DGA which contains political debates, and ELDA, which contains
typical Broadcast News shows.
The tuning of the model parameters was based on the DEV set. This
includes the estimation of hyperparameters of the model as well as
the tuning of the scaling factor r. The number of virtual observations
was set equal for both the Gaussian and the inverse-Wishart prior,
ν = p = 200r. The mean of the Gaussian prior was set equal to
0, while Σ0 equal to the covariance of the DEV set, averaged across
shows. Moreover, we set Ψ = pΣ0 to respect the conjugacy of the

prior to the likelihood. Finally, the scaling factor r was set equal to
0.30 and 0.17 for the DGA and ELDA set, respectively.
We compare the results of the proposed algorithm to those obtain
by CRIM’s primary system, described in [14]. Like the proposed
method, the system uses the AHC algorithm to merge segments.
However, it models speakers using a 256-component GMM, based
on GMM-UBM adaptation scheme, and uses the normalized cross-
likelihood ratio (NCLR) as a similarity measure.
The systems are the same, up to the clustering stage. We should
note that the speaker turn detector is using a Viterbi algorithm to lo-
cate the boundaries turn more precisely. Due to it, we found that
for the proposed algorithm, no further gain could be attained by ap-
plying a Viterbi algorithm after the clustering stage. Therefore, the
results for the proposed method are simply those obtained by the
AHC algorithm. We denote by CRIMp, CRIMs and CRIM∗s the
GMM-UBM algorithm, the proposed without the partition prior and
the proposed with the prior, respectively. The results are given in Ta-
ble 1 in terms of Diarization Error Rate (DER) and estimated number
of speakers. The false alarm rate was 1.4% for 2.0% for DEV and
EVAL, respectively for all the systems (since they shared the same
speech detector) and the missed detection close to 0%. They clearly
demonstrate the strength of the method, considering that a single
Gaussian was deployed to model the highly multimodal speaker dis-
tribution. Moreover, with the inclusion of the prior on the partition
space, we managed to discard the majority of those short segments
that formed singleton clusters. This is evident by comparing the es-
timated number of speakers in CRIMs and CRIM∗s . Even without
the prior, though, the proposed system was ranked amongst the best
in the ETAPE contest, when all the other submitted systems (29 on
total) used either GMMs or iVectors.

Table 1. DER (%) and estimated number of speakers (#SPK)
on the ETAPE contest. The last column indicates the true
number of speakers for each set.

CRIMp CRIMs CRIM∗
s #SPK

DER(%), DEV 13.48 13.31 13.10 -
#SPK, DEV 173 178 157 152

DER(%), EVAL 19.77 18.08 17.40 -
#SPK, EVAL 184 190 158 156

4. EFFECTIVE SAMPLE SIZE IN IVECTORS

We are now dealing with the problem of speaker recognition. In
this section, we show how to apply the effective sample size to the
dominant representation of current state-of-the-art technology, the
iVectors, [1]. Experimental results will be presented on NIST-2010
8conv-extended, using a standard Gaussian PLDA.

4.1. Short description of iVectors

Recall that iVectors encode the means of a Gaussian Mixture Model
(GMM) with typically C = 2048 components, which are con-
strained to lie on a low-dimensional space of d ∈ [400, 600]
dimensions. For the cth mixture component, let x ∈ <d be an
iVector, (wc,mc,Σc)

C
c=1 the parameters of the Universal Back-

ground Model (UBM) and Vc the cth block of the total variability
matrix V T = [V T

1 , . . . , V
T
C ]. Then, the mean vector of the cth
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component µc is given by the following equation

µc = mc + Vcx (7)

In order to extract the iVector of an utterance y = {y(i)}ni=1, the
zeros and first order Baum-Welch statistics are calculated as follows

(Nc, Fc) =

(
n∑

i=1

γ(i)
c ,

n∑
i=1

γ(i)
c y(i)

)
(8)

where γ(i)
c is the posterior of the ith frame to belong to the cth mix-

ture component. Then, the iVector x̃ (i.e. the posterior expectation
or MAP estimate of x) is given by the following formula

x̃ = Cov(x)
∑
c

V T
c Σ−1

c (Fc −Ncmc) (9)

where

Cov(x) =

(
I +

∑
c

NcV
T
c Σ−1

c Vc

)−1

(10)

the covariance of the estimate of x, [1].

4.2. Scaling-down the statistics

Scaling the Baum-Welch statistics is straightforward. We simply ap-
ply Nr

c = rNc and F r
c = rFc. Note that the same operation should

be applied when training the iVector extractor.
The effect of this scaling is two-fold. First, the volume of Cov(x)
increases in order to reflect the larger uncertainty regarding the es-
timate, while the second effect would be the increased contribution
of the prior on x̃. Although the results we present do not make use
of the uncertainty in the estimate, they demonstrate how the second
effect alone can improve the recognition performance.

4.3. Experiments on NIST-2010

We performed experiments on the 8conv - coreext condition of the
telephone speech NIST extended list. We focus on female data only,
where the state-of-the-art performance is worst than the one on male
data. We use the Equal Error Rate (EER) and the (new and old)
minimum Detection Cost Function (minDCF) of NIST as metrics.
For specifications regarding the UBM and iVector extractor we refer
to [15].
The model we use is the standard Gaussian PLDA with length nor-
malization, [16]. No averaging is applied to neither the iVector, nor
to the LLR level. We have also formed a second experiment, where
the number of enrollment recordings was randomized between 1 and
8. The results are given in Table 2 (denoted by 8conv), while the
DET curves are illustrated in Fig. 1.

Table 2. Results on NIST-2010 8conv and 1-8conv extended
female telephone data (i.e. det5)

EER(%) minDCFold minDCFnew
8conv, r = 1 1.26 0.065 0.28

8conv, r = 1/3 1.22 0.062 0.24
1-8conv, r = 1 2.25 0.080 0.30

1-8conv, r = 1/3 2.14 0.072 0.28

Fig. 1. DET curves on NIST-2010 8conv extended female tele-
phone data (i.e. det5). Blue dashed line: no scaling factor
(i.e. r = 1), Red line: scaling factor r = 1/3.

The results show that an improvement is attained in all metrics
for both 8conv and 1-8conv sets. The interpretation is that when
the scaling is omitted, the posterior expectation of x is dominated
by the likelihood and therefore becomes too noisy. By using a rea-
sonable scaling factor, the prior manages to regularize the iVectors,
leading the PLDA model to increased performance. We should also
emphasize that this improvement has been attained without full op-
timization of the scaling factor r. The only other value we examined
was r = 1/5, which resulted in inferior performance compared to
r = 1/3, yet slightly better to the one with r = 1.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we showed the reason why the statistics of features
need to be scaled down, and presented the benefits from such a nor-
malization. We focused on two major tasks in speaker characteriza-
tion technologies, namely diarization and recognition, and on mod-
els of highly diverge complexity. The experiments on diarization
were based on the ETAPE contest and showed how competitive a
baseline approach can be, when the ESS is taken into account. More-
over, the experiments on iVector-based speaker recognition showed
an improvement in performance, ranging from small to significant,
depending on the score metric.
For future work, our priority will be to examine whether the auto-
matic extraction of the scaling factor proposed in [7] works well in
the case of speech. If so, several possibilities would open, such as
the use of utterance-dependent scaling factors. This scenario seems
to be reasonable, since inter-frame correlation varies across speakers
and even speech segments of the same speaker. Moreover, we are
planning to examine the effectiveness of the ESS scaling in methods
that make use of the uncertainly of the iVector in the back-end, [3].
Finally, it would be interesting to reconsider several algorithms pro-
posed in diarization and recognition literature, using the ESS scaling.
The state-of-the-art performance of the AHC algorithm showed that
it can be accounted as a good example.
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