
LINK PREDICTION METHODS FOR GENERATING SPEAKER CONTENT GRAPHS

K. Greenfield, W. M. Campbell

MIT Lincoln Laboratory, Human Language Technology Group, Lexington, MA, USA
{kara.greenfield, wcampbell}@ll.mit.edu

ABSTRACT
In a speaker content graph, vertices represent speech signals and
edges represent speaker similarity. Link prediction methods calcu-
late which potential edges are most likely to connect vertices from
the same speaker; those edges are included in the generated speaker
content graph. Since a variety of speaker recognition tasks can be
performed on a content graph, we provide a set of metrics for evalu-
ating the graph’s quality independently of any recognition task. We
then describe novel global and incremental algorithms for construct-
ing accurate speaker content graphs that outperform the existing k
nearest neighbors link prediction method. We evaluate these algo-
rithms on a NIST speaker recognition corpus.

Index Terms— speaker recognition, link prediction, network theory

1. INTRODUCTION

Speaker recognition based on vector methods has become the
standard approach to text-independent speaker recognition. These
methods take a speech recording and map it to a fixed size vec-
tor which is then used to perform recognition tasks. Common
approaches use GMM supervectors [1] and iVectors [2]. Vector
methods have an intuitive geometric interpretation as well as being
amenable to standard machine learning, linear algebra, and Bayesian
methods.

A recent development which leverages the vector-based ap-
proach is the use of speaker content graphs [3]. Speaker content
graphs capture the manifold structure of a corpus of recordings by
expressing similarity between close vectors. In a speaker content
graph, vertices represent recordings and edges represent speaker
similarity. The ideal speaker content graph would have edges only
between vertices from the same speaker. In practice, edges repre-
senting false alarms are present and edges representing misses are
absent.

Speaker content graphs have already proven to be an effective
methodology in common speaker recognition and novel corpus level
tasks. Prior work has explored the speaker comparison (1-1) prob-
lem using geodesics and multiple features sets, see [3] and [4]. Also,
speaker retrieval using content graphs and a low-computation ran-
dom walk approach was demonstrated in [5].

Although multiple applications for content graphs have been
examined for content graphs, limited exploration of how to con-
struct higher-quality graphs has been considered. Typically, two ap-
proaches appear in the semi-supervised learning literature for con-
structing similarity based graphs—epsilon neighborhoods of points
and k-nearest neighbor (KNN) graphs [6]. For epsilon neighbor-
hoods, connecting all vectors that are within a radius of a point, it
was found in prior work [3] that the resulting graphs are very sensi-
tive to the neighborhood chosen and produce unusual degree distri-

∗This work was sponsored by the Department of Defense under Air
Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions,
and recommendations are those of the authors and are not necessarily en-
dorsed by the United States Government.

butions. The alternate approach, using KNNs, has better properties,
but still will always connect k neighbors regardless of whether these
are the same speaker or not.

In this paper, we consider novel methods for graph construc-
tion. In standard approaches, edges are selected independently. We
consider approaches that use prior knowledge about the expected
global structure of the content graph. For instance, knowledge of
the number of utterances per speaker should result in a target degree
distribution for the graph. Another global constraint is that the graph
structure should include cliques of connected vertices from the same
speaker. The overall edge structure should be sparse. Using these
global constraint ideas, we construct several algorithms which lead
to improved quality graphs.

The outline of the paper is as follows. Section 2 describes back-
ground information on link prediction and speaker content graphs. In
Section 3, we describe the baseline KNN method and present three
new link prediction methods. In Sections 4 and 5, we explore the
performance and sensitivity of the algorithms.

2. SPEAKER CONTENT GRAPHS

Content graphs are initially constructed based on methods from the
semi-supervised learning literature [6, 7]. We start with a set of vec-
torsM = {mi} obtained as a vector mapping of a corresponding set
of speech signals. The vectors are contained in a manifold, and we
create a graph G which reflects the local connectivity and distances
of points on the manifold.

The procedure for constructing a speaker content graph is the
following. First, each vertex v in the graph corresponds to a single
vector m from a speech signal. We define weights for edges in the
graph via a weight matrix W = [Wi,j] where

Wi,j =

{
e−d

2(mi,mj)/σ
2

if an edge exists between i and j
0 otherwise.

(1)
We consider the edge between i and j to be in the graph ifWi,j 6= 0.

The parameter σ controls the decay of the exponential function
and corresponds to soft edge weight between 0 and 1. In our meth-
ods, we use an approximate KL divergence [1] for the distance in (1).
In order for the graph to reflect the local neighborhood of v, we only
connect it to a limited number of neighbors.

The truth graph is an instantiation of a speaker content graph
with weight matrix W = [Wi,j] where

Wi,j =

{
1 i and j are from the same speaker
0 otherwise.

(2)

Since originating from a given speaker is a transitive property, the
truth graph is a union of mutually disjoint complete subgraphs.

3. LINK PREDICTION

Link prediction uses vertex similarity to compute which edges to in-
clude in a graph, either generating all of the edges or adding missing

7721978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

edges to an existing graph. Traditionally link prediction has been
performed for social networks or web pages [8]. Other efforts, such
as [9] have focused more on clustering than quality of the link predic-
tion. Our work proposes new methods that build off the current best
method, the k nearest neighbors algorithm. We tailor our approach
to produce graphs with many highly connected disjoint components.

3.1. Link Prediction Methods
We present four link prediction methods to generate content graphs.
The first, KNN, was shown to be useful for speaker recognition
by [3]. While KNN was a significant improvement over the ε graph
baseline in [3] by better conforming to the true degree distribution,
there is still room for improvement. A good content graph genera-
tion algorithm should produce graphs with the following criteria:

• High precision and recall of generated edges

• Realistic degree distribution

• High clustering coefficient

We measured the precision and recall by comparing edges con-
tained in a generated graph to edges contained in the truth graph. We
define a correct edge in the generated graph as an edge that is also in
the truth graph. Specifically:

Precision =
Number of correct generated edges

Number of generated edges
(3)

Recall =
Number of correct generated edges

Number of edges in truth
. (4)

The degree of a vertex is the number of vertices that are adjacent
to it and the degree distribution of a graph is the probability distri-
bution of the degrees over all of the vertices in the graph. When
comparing degree distributions, we looked at both the range of the
distribution and the shape.

Clustering is a metric of edge transitivity. The clustering coef-
ficient of a node is the proportion of pairs of its neighbors that are
adjacent. The clustering coefficient of a vertex v is defined as fol-
lows:

cv =
2T (v)

deg(v)(deg(v)− 1)
, (5)

where T (v) is the number of triangles that contain v and deg(V) is
the degree of v. The clustering coefficient of a graph is the average
clustering coefficient of its vertices [10]. A graph that is a union of
complete subgraphs, such as the truth graph, will have a clustering
coefficient of 1 while a randomly generated graph will have a clus-
tering coefficient closer to 0.

By producing graphs that optimize the above parameters, we are
implicitly generating sparse graphs with approximately one highly
connected component per speaker. This allows us to generate close
approximations to the truth graph.

3.2. k Nearest Neighbors

The KNN algorithm constructs content graphs in an incremental
manner. As new speech data streams in over time, KNN dynami-
cally updates the content graph to reflect the new data. We briefly
describe two steps to make this an efficient process.

Suppose we have an existing data set M = {mi} with |M | =
n, a new piece of data mn+1, a content graph G, a list of indices,
the closest k distances {Di,j} to each mi, and a weight matrix W .
Adding a new utterance to the graph is equivalent to appending a row
and column to W , see Algorithm 1. The result is that the k closest
points to m are inserted into D; for appropriate i, m is inserted into
the distances and lists for mi.

Algorithm 1 k Nearest Neighbors Link Prediction
Input: new vector to add, mn+1

for i = 1→ k do
Compute and store d(mn+1,mi) and store a sorted list,

Dn+1,i and corresponding indices.
for i = k + 1→ n do

Compute d(m,mi) using an early out algorithm:
Retrieve the furthest neighbor distance Di,k for mi.
for the dimensions in the input vector mn+1 do

The current estimate of the distance is
monotonically increasing.
if the estimate is greater than Di,k and Dn+1,k then

Go to the next i
Insert the point in the appropriate list.

3.3. Greedy Link Prediction

KNN implicitly assumes an approximately uniform degree distribu-
tion and explicitly assumes that each vertex has degree at least k.
As neither of these assumptions are realized in actual data, we need
an alternative algorithm that generates content graphs with realistic
degree distributions.

Greedy link prediction uses a modified version of KNN’s setup.
Instead of storing the distances indexed by utterances, the distances
are stored in a single vector D and sorted in increasing order,
D1 ≤ D2 ≤ ...Dn. Unlike KNN, which added utterances to the
graph incrementally, greedy link prediction requires knowledge of
all utterances a priori. Greedy link prediction also requires a de-
sired degree distribution that is realizable as a graph with the re-
quired number of vertices. Greedy link prediction uses the steps in
Algorithm 2 to construct a content graph.

Algorithm 2 Greedy Link Prediction
for i = 1→ n do

Add the edge associated with Di to G unless doing so will
make it impossible to attain the desired degree distribution. This
is done when one of the following conditions is met.

• One or both of the vertices incident with the edge associated
with Di already has the maximum degree specified in the
degree distribution.

• Incrementing the degree of one or both of the vertices inci-
dent with the edge associated with Di will cause there to be
too many vertices of high degree.

• Incrementing the degree of one or both of the vertices inci-
dent with the edge associated with Di will cause there to be
too few remaining vertices of low degree.

In experiments, we found that using the 100 closest distances
from each utterance inD worked well. Doing this removes the guar-
antee that the truth graph can be recovered. However, the changes
to the graph will be minimal, and we observed that the improved
efficiency outweighs the slight degradation in graph quality.

3.4. Force-Clique Link Prediction

A perfect content graph is a union of cliques, where a clique is de-
fined as a set of n pairwise adjacent vertices (i.e., the induced sub-
graph is complete). Force-clique link prediction improves existing
content graphs by removing some edges and inserting others in order
to make the graph closer to this ideal. Suppose we have an existing
content graph G. A maximal clique in G is a clique that cannot be
enlarged to a larger clique by adding additional vertices.

7722

We note that since D only contains the k closest distances to
mi, we may not know the appropriate weight for every newly added
edge. In this situation, the average weight is used in liu of the exact
weight without noticable degradation in the overall quality of the
graph. Our global force-clique algorithm is shown in Algorithm 3.

Algorithm 3 Global Force-Clique Link Prediction
for each maximal clique C do

if |C| ≥ minsize then
for each vertex v not in C do

if at least x percent of the vertices in C are adjacent to
v then

Connect all vertices in C to v.
else

Disconnect all vertices in C from v.

Force-clique link prediction can also generate graphs in an incre-
mental manner. Suppose we have an existing data set M = {mi}
with |M | = n, a new piece of data mn+1, a content graph G, a list
of indices, the closest k distances {Di,j} to each mi, and a weight
matrix W . Adding a new utterance to the graph is equivalent to
appending a row and column to W . Incremental force-clique link
prediction uses the steps in Algorithm 4 to add m to G.

Algorithm 4 Incremental Force-Clique Link Prediction
Use any incremental link prediction algorithm to add m to G. Let
v be the vertex corresponding to m.
for each maximal clique C do

if |C| ≥ minsize then
if at least x percent of the vertices in C are adjacent to v

then
Connect all vertices in C to v.

else
Disconnect all vertices in C from v.

Incremental force-clique link prediction will not always gener-
ate the same graph as global force-clique link prediction. Differ-
ences arise in cases where v would have been in a clique if it had
been added toG prior to applying force-clique link prediction. After
force-clique link prediction is applied, we don’t know which edges
were present in G, so we don’t know which cliques v would have
been a member of. The differences, if any, are minimal and local-
ized; some of the differences result in the incrementally generated
graph being more accurate. As such, the computation savings in-
curred in applying incremental force-clique link prediction are typi-
cally worthwhile.

In our experiments, the best value forminsize in both the global
and incremental variations of force-clique link prediction was con-
sistently 5. If G has high precision, a slightly lower value can be
used. This allows for the generated graph to have a higher recall, but
will drastically reduce precision if done inappropriately. Unless the
precision of G is extremely low and the average degree is expected
to be high, larger values should not be used for minsize. Doing so
constricts force-clique link prediction, so that it only modifies a few
of the edges in G. A better option is to use a differently parameter-
ized algorithm to generate G so that it has higher precision.

4. COMPARISON OF GENERATED CONTENT GRAPHS

Experiments were performed on the NIST 2008 speaker recognition
evaluation (SRE) data set [11]. All 8 conversation telephony data

Fig. 1. Comparison of precision/recall for multiple algorithms on
male NIST SRE08 data.
was used resulting in 2,790 male utterances and 4,748 female utter-
ances. We measured performance in terms of edge precision and
recall, degree distribution, and clustering coefficient. Whenever re-
sults from both genders aren’t shown, we present results from the
male subset; in all such cases results were comparable for the fe-
male corpus. In liu of performing cross validation on a different cor-
pus, we compared results across genders and performed sensitivity
analysis.
Edge Precision/Recall. The graph in Figure 1 shows the precision
and recall of KNN for several values of k, greedy link prediction
with the actual degree distribution, and force clique link prediction
with several values of x applied to all of the above graphs. Force
Clique link prediction improved precision and recall of both the
graph generated by greedy link prediction and the k nearest neigh-
bors graph. Even though the greedy algorithm had better perfor-
mance than KNN, the KNN graph with force clique improvement
was better than the greedy graph with force clique improvement.
This is because many of the edges which were correctly generated
by the greedy algorithm but not generated by the KNN could be gen-
erated by the force clique improvement algorithm.
Degree Distributions. Results are given in Figure 2. As expected,
greedy link prediction generated a graph with almost perfect degree
distribution. KNN had the worst degree distribution. Using k = 8
gave the closest distribution of all k values, but even this generated
a degree distribution with a very different range and moderately dif-
ferent shape than that of the truth graph. Applying force clique-link
prediction to the KNN graph made the generated degree distribution
better match the truth degree distribution.
Clustering Coefficient. As seen in Figure 3, all of the methods
produced graphs with reasonable clustering coefficients, indicating
graphs where transitivity applies in a majority of cases. As when

Fig. 2. Comparison of degree distributions on male NIST SRE08
data.

7723

Fig. 3. Clustering coefficients for multiple algorithms.

Fig. 4. Sensitivity analysis of the KNN algorithm.

measuring precision and recall, the best results were obtained by
applying force-clique link prediction to a KNN graph.

5. PARAMETER SENSITIVITY ANALYSIS
Since it is highly unlikely that the optimal parameters will be known
a priori, it is important to know how sensitive graph generation is
to input parameters. Due to space constraints, we only consider the
parameter sensitivity as it affects edge precision and recall on the
male NIST SRE08 data.
KNN Sensitivity. KNN was the most sensitive of the algorithms we
tested, see Figure 4. Precision seems to be more sensitive that recall,
but once you deviate by more than one from the optimal value, both
show significant changes.
Greedy Link Prediction Sensitivity. Greedy link prediction takes
an entire distribution as input rather than just a single number, which
makes sensitivity analysis especially important. The actual degree
distribution of the entire data set may not be known exactly, but in
many cases, the properties of the distribution may be known. Thus,
it is reasonable to extract a close approximation to the complete de-
gree distribution. In other scenarios, very little may be known about

Fig. 5. Sensitivity analysis of the greedy algorithm.

Fig. 6. Sensitivity analysis of the force-clique algorithm and inter-
action with other parameters.

the degree distribution. For comparison purposes, we consider two
distributions which require very little a priori knowledge. In the
uniform degree distribution, all vertices are given the same degree,
which should be chosen to be the expected mean, P (X = k) = 1,
k = mean, and zero otherwise. In the triangle distribution,

P (X = k) =

2(k −min)

(max−min + 2)(mean−min + 1)
k ≤ mean

2(max− k)
(max−min + 2)(max−mean + 1)

otherwise.

(6)
Results are shown in Figure 5. Using the uniform distribution, which
only requires knowledge of the expected mean, yielded results al-
most as good as when the true distribution was used.
Force-clique sensitivity. Force-clique link prediction was some-
what sensitive to the choice of x, but setting x = .4 improved both
precision and recall in all of our experiments and results were fairly
robust near that point, see Figure 6. Additionally, applying force-
clique link prediction reduced the senstivity of k in KNN.

6. CONCLUSIONS
Prior work evaluated the results of speaker recognition tasks [3, 5],
but did not consider the quality of the content graph or the link pre-
diction method in detail. We identified a set of metrics by which
to judge speaker content graphs independently of the analysis tasks
performed on them. We presented several methods for generating
content graphs which outperformed the existing KNN method in all
of those metrics. Future research will focus on using these improved
graphs for speaker recognition.

7724

7. REFERENCES

[1] W. Campbell and Z. Karam, “Simple and efficient speaker compari-
son using approximate KL divergence,” in Proceedings of Interspeech,
2010.

[2] N. Dehak, R. Dehak, P. Kenny, N. Brummer, P. Ouellet, and P. Du-
mouchel, “Support vector machines versus fast scoring in the low-
dimensional total variability space for speaker verification,” in Pro-
ceedings of Interspeech, 2009.

[3] Z. Karam and W. M. Campbell, “Graph embedding for speaker recog-
nition,” in Proc. Interspeech, 2010, pp. 2742–2745.

[4] Z. Karam, W. M. Campbell, and N. Dehak, “Graph relational features
for speaker recognition and mining,” in IEEE Statistical Signal Pro-
cessing Workshop, 2011, pp. 525–528.

[5] W. Campbell and E. Singer, “Query-by-example using speaker content
graphs,” in Proceedings of Interspeech, 2012.

[6] Mikhail Belkin and Partha Niyogi, “Using manifold stucture for par-
tially labeled classification,” in Advances in Neural Information Pro-
cessing Systems 15, S. Thrun S. Becker and K. Obermayer, Eds., pp.
929–936. MIT Press, Cambridge, MA, 2003.

[7] Xiaojin Zhu, “Semi-supervised learning literature survey,” Tech. Rep.,
University of Wisconsin–Madison, 2007.

[8] D. Liben-Nowell and J. Kleinberg, “The link prediction problem for so-
cial networks,” in International Conference on Information and Knowl-
edge Management (CIKM), 2003, pp. 556–559.

[9] D. A. van Leeuwen, “Speaker linking in large data sets,” in IEEE Proc.
Odyssey Speaker and Language Recognition, 2010.

[10] D. J. Watts and Steven Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, pp. 440–442, 1998.

[11] “The NIST year 2008 speaker recognition evaluation plan,”
http://www.itl.nist.gov/iad/mig/tests/sre/2008/, 2008.

7725

