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ABSTRACT 
 
Speaker clustering is an important task in many applications 
such as Speaker Diarization as well as Speech Recognition. 
Speaker clustering can be done within a single multi-speaker 
recording (Diarization) or for a set of different recordings. 
In this work we are interested by the former case and we 
propose a simple iterative Mean Shift (MS) algorithm to 
deal with this problem. Traditionally, MS algorithm is based 
on Euclidean distance. We propose to use the Cosine 
distance in order to build a new version of MS algorithm. 
We report results as measured by speaker and cluster 
impurities on NIST SRE 2008 datasets. 
 

Index Terms— Speaker Clustering, Mean Shift (MS), 
Cosine distance, Speaker Impurity, Cluster Impurity. 
 

1. INTRODUCTION 
 
The objective of clustering is to create clusters that are as 
much as possible dense and distant from others by linking 
nearby observations in terms of a given metric. For speech 
processing and many other disciplines, clustering task is 
essential especially when dealing with unlabeled data. In 
speech processing, we often want to label data according to 
units such as linguistic  (phonemes, words, phrases…) or to 
a speaker state (emotion, sex, health, age…) or even to the 
speaker himself. When label corresponds to the speaker we 
call this Speaker Clustering. Speaker clustering is an 
important task for many fields such as automatic speaker 
adaptation in speech recognition systems and speaker 
diarization. It could also serve to improve storage allocation 
and help searching into a huge multimedia dataset, etc.  
In this work, our main contribution is twofold. In one hand, 
it is to adopt the Mean Shift algorithm [1] to perform 
clustering of a large dataset (SRE 2008 data). In other hand, 
it lies in the use of Cosine distance in order to build a new 
version of MS algorithm. Traditionally, MS algorithm uses 
Euclidean distance. 
Now that we fixed our goal and described our clustering 
approach, one question remains. What speech signal 
representation will be used in our system? It will be the i-
vector which became the state-of-the-art feature vector in 
speaker recognition field [2]. 

The rest of this paper is organized as follows. In the next 
section, we present some preliminaries about the baseline 
Mean Shift algorithm as well as our proposed version of this 
algorithm. In section 3, we expose the trade-off plotting and 
impurity metrics used to evaluate the performance of our 
clustering system. Before concluding, we outline our 
experiments and discuss results in section 4.    
 

2. MEAN SHIFT 
 

Mean Shift is a nonparametric iterative mode-seeking 
algorithm introduced by Fukunaga [1]. Despite its first 
appearance in 1975, Mean Shift remained in oblivion except 
for works as in [3] which generalize the original version 
proposed by Fukunaga.  MS algorithm reappeared in 2002 
with the work of Comaniciu [4] in image processing. 
Recently, Stafylakis et al. [5][6] published nice works in 
which they generalized the basic Euclidean space MS to the 
manifolds of parameters space. They applied this version to 
the clustering problem tested on broadcast news diarization 
task. The most important propriety of MS algorithm is that it 
performs clustering without any prior knowledge about 
neither clusters number nor distribution shape of these 
clusters. 
 
2.1. Basic Mean Shift 
Mean Shift is a member of Kernel Density Estimation 
(KDE) family also known as Parzen windows. Given a set 
of d-dimensional observations (i-vectors in our case) 
S = x1, x2,…, xn{ }  the kernel density function in a given 
point x is given by the following formula: 
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where k(x) is a kernel function and h is its radial width or 
the so-called kernel bandwidth. The bandwidth h is the only 
tuned parameter in the Mean shift algorithm. Its role is to 
smooth the estimated density function.  Both kernel and 
bandwidth should satisfy some conditions in order to ensure 
some proprieties like asymptotic, unbiasedness and 
consistency. These conditions are discussed in details in [1]. 

7712978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



Considering a differentiable kernel function, we can 
estimate the density gradient as the gradient of the kernel 
density estimate given in (1) as follows: 
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One simple type of kernels (the shadow of the flat kernel) is 
the Epanechnikov kernel, given by the following formula: 
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where cd represents the volume of the d-dimensional unit 
sphere.  
Substituting  (3) in (2) we obtain the density kernel estimate 
for the Epanechnikov kernel: 
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where Sh(x) is the set of nx points that the pairwise 
Euclidean distance to x is less or equal to a threshold (i.e. 
the bandwidth h): 
 
      Sh x( ) ! xi : xi " x # h{ }                                                   (5) 
 
The second part of equation (4) is what we called the 
Sample Mean Shift M x( ) : 
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Finally, we can observe that Mean shift in a given point x is 
nothing than the shift of this point to the sample mean 

µ =
1
nx

xi
xi!Sh (x )
" of its neighboring points falling within a 

hypersphere of radius h (i.e. bandwidth). The Euclidean 
distance governs the allocation of neighboring points to that 
hypersphere. Thus, an iterative executing of sample mean 
calculation followed by window shifting (as depicted in the 
Algorithm 1) leads to get a stationary point (density mode). 
Proofs of convergence and mathematical details of this 
procedure can be found in [1]. Additionally, a generalization 
of the basic Euclidean space MS to the manifolds of 
parameters space could be found in [6]. 

 
2.2. Cosine distance Mean Shift 
Recently, classification based on Cosine distance became 
the state-of-the-art methods used in speaker recognition 
fields [2][7]. Moreover, the success of Cosine distance for 
distinguishing between speakers motivates scientists to 
study in more details the Cosine distance. In speaker 
recognition field, researches lead to discover that length 
(Euclidean Norm) normalization of i-vectors is 
advantageous for generative model based on Gaussian 
assumption [8]. Note that the length normalization is an 
intrinsic operation in the Cosine distance (see equation (7)). 
Furthermore, it is also proved that whitening of high 
dimensional data followed by projecting it onto the unit 
sphere (i.e. length normalization of data) Gaussianize these 
data. For an entertaining discussion of this curious fact, we 
will refer you to a web site1.    
In Euclidean space geometry, the Cosine distance measures 
dissimilarity between two points relatively to the space 
origin. In fact, this dissimilarity is nothing more than a dot 
product of the Cartesian coordinates vectors normalized by 
their Euclidean norms (lengths). Let {x,y} be a set of two d-
dimensional vectors of Cartesian coordinates of two points 
in the space.  The Angular distance D between these points 
is given by the following: 
 

      D(x, y) = x ! y
x y

                                                  (7) 

  
The original Mean Shift version based on a flat kernel relies 
on Euclidean distance to find points falling within the 
window as shown in (5). The main contribution of this work 
is to propose the use of the angular distance instead of the 
Euclidean one. In order to get this new version, one 
modification is introduced in equation (5) which is: 
 
      Sh x( ) ! xi :D xi, x( ) " h{ }                                   (8)    
 
where D xi, x( )  is the Cosine distance between xi  and x . 
 
 
                                                
1 http://ontopo.wordpress.com/2009/03/10/reasoning-in- higher-
dimensions-measure/ 

Algorithm 1 Mean Shift Intuition 
− i ← 0 
− Center a window around xi //Initialization 
repeat 

− µ //estimate the sample mean of data falling 
within the window 

− xi+1 ← µ 
− Move the window from xi to xi+1 
− i ← i+1 

until Stabilization //No more move of the sample mean 
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2.3. Clustering with Mean Shift 
The natural way to perform clustering using Mean Shift 
algorithm is to run separately the iterative Mean Shift for 
each point in the dataset. Indeed, some observations will 
converge to the same stationary point (density mode). The 
number of unique stationary points (after pruning) 
corresponds the number of detected clusters and obviously 
data converge to a same mode that belongs to the same 
cluster. We usually call these points, basin of attraction of 
its mode. 

 
3. PERFORMENCE MESURING 

 
We use speaker to refer to a reference cluster i.e. the actual 
cluster or the speaker and cluster to refer to the detected 
cluster. Recently in [9], authors propose two impurity 
measures, one for speaker and the other for cluster. 
Mathematical details of these impurities are described in [9].   
 
3.1. Cluster Impurity 
Cluster impurity Ic measures the heterogeneousness of 
detected clusters i.e. data from different speakers. Cluster 
impurity ranges between 0 to almost 1. Smaller the value of 
Ic more discrimination exists between clusters. Ic = 0 means 
zero uncertainty about assigning each utterances to clusters. 
 
3.2. Speaker Impurity 
Speaker impurity Is measures the dispersion of observations 
of an actual cluster (speaker) amid different clusters 
(detected clusters). More smaller the value of Is more certain 
about assigning utterances of a same speaker to the same 
cluster. Is = 0 corresponds to the trivial solution of assigning 
all observations in a single cluster.   
 
3.3. DET plot illustration 
A certain analogy exists between errors committed by a 
Speaker Verification system (missed detections vs. false 
alarms) and the previous cited impurities [9]. This is why 
using a trade-off plotting as DET plot can help in 
interpretation and comparison of results between clustering 
systems.  
 

4. EXPERIMENT SETUP 
 
4.1. Feature extraction 
4.1.1. Short-time signal parameterization 
Each 10ms, 60 Mel Frequency Cepstral Coefficients 
(MFCC) were extracted within a 25ms hamming window 
(19 MFC Coefficients + Energy + first & second Deltas) 
from speech signal. These features were normalized with a 
short time Gaussianization. 
 
4.1.2. Universal Background Model (UBM) 
We use a gender-independent GMM UBM containing 2048 
Gaussians. This UBM is trained with the LDC releases of 

Switchboard II, Phases 2 and 3; Switchboard Cellular, Parts 
1 and 2; and NIST 2004–2005 SRE (only telephone speech). 
 
4.1.3. I-vectors extraction 
We use a gender independent i-vector extractor of 
dimension 800. Its parameters are estimated on the 
following data: LDC releases of Switchboard II, Phases 2 
and 3; Switchboard Cellular, Parts 1 and 2; Fisher data and 
NIST 2004 and 2005 SRE (telephone + Microphone 
speech). 
 
4.2. Channel compensation 
4.2.1. Linear Discriminant Analysis (LDA) 
LDA projection matrix is A estimated on the 800 
dimensions i-vectors representing the same speech data used 
in i-vector extractor training except of Fisher part. Only 
telephone data is used to estimate the between classes 
scatter matrix however we used both telephone and 
microphone data to estimate the within class scatter matrix. 
The LDA is applied to reduce i-vectors dimensionality to 
200.     
 
4.2.2. Within Class Covariance Normalization (WCCN) 
Same data used to estimate A is used to estimate the within 
class covariance matrix W . However, the i-vectors were 
first subject to a mapping to 200 dimensions using LDA. All 
i-vectors will be rotated (normalized) using Cholesky 
decomposition matrix of the inverse of W . 
 
4.3. Test dataset 
In this work we adopted telephone SRE 2008 data as our 
test dataset. This dataset contains 3090 telephone recordings 
of 1270 gender independent speakers.  
 
4.4. Experiments and results 
In order to evaluate and compare performance of our 
proposed Mean Shift algorithm based Cosine distance, we 
ran it several times on the test dataset by changing the 
threshold h from 0.1 to 0.99. In an analog way, we also ran 
the original version of Mean Shift algorithm i.e. based 
Euclidean distance on the same dataset also by changing the 
threshold h from 10 to 35.   
In this paper, we present the most interesting results in 
which we can observe the important operating points like 
equal impurities and when the estimated number of clusters 
Nc is approximately equal to the actual number of speakers 
(see Tab. 1).  
Observing reported results in Table 1 we can draw some 
conclusions. Firstly, one can state that both systems (i.e. 
Euclidean and Cosine based systems) reached an equal 
impurities point (0.123 for Euclidean vs. 0.09 for Cosine) 
after over estimating the number of clusters (1496 for 
Euclidean vs. 1414 for Cosine). However, the over 
estimation in the Cosine distance system is less than the one 
in the Euclidean system. Fortunately, over estimation is 
usually better than under estimation in clustering systems.  
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In terms of equal impurity, it is clear that the system based 
on Cosine distance outperforms the Euclidean one (0.123 
for Euclidean vs. 0.09 for Cosine). If we compare equal 
impurity point to the NIST Equal Error Rate (EER) in the 
verification system (in the same way as in [9]), we observe a 
relative improvement of 11% (from 12.3% to 9%) between 
Cosine distance system and Euclidean system. 

Tab. 1 Pertinent results (Cosine vs. Euclidean) as measured by 
cluster impurity Ic, speaker impurity Is and the corresponding 
detected number of clusters Nc in function of the threshold h. Not 
that the actual number of clusters (speakers) is 1270. The gray 
highlighted rows represent when the system estimates 
approximately the actual number of clusters. Finally the bold 
entries rows represent when Ic is approximately equal to Is.    

Euclidean distance Cosine distance  
h Ic Is Nc h Ic Is Nc 

23.8 0.238 0.085 1297 0.54 0.207 0.060 1161 
23.7 0.215 0.090 1337 0.55 0.168 0.065 1225 
23.6 0.199 0.096 1368 0.56 0.137 0.071 1286 
23.5 0.178 0.101 1397 0.57 0.109 0.080 1352 
23.4 0.153 0.108 1438 0.58 0.089 0.092 1414 
23.3 0.142 0.113 1461 0.59 0.069 0.106 1471 
23.2 0.126 0.120 1496 0.60 0.056 0.120 1537 
23.1 0.105 0.128 1533 0.61 0.047 0.135 1602 

 
Unfortunately we are not able to perform a back-to-back 
comparison with results reported in [9], since authors report 
results on SRE 2006 dataset.  Note that it is well known to 
the speaker recognition community that the speaker 
verification task on this data was easier than other datasets 
like SRE 2008. However their equal impurity was 13.9% on 
SRE 2006 data compared to our 9% on SRE 2008. 

Fig. 1 DET plots for Mean Shift clustering using Cosine distance 
vs. Euclidian distance.   

 
 

Finally, the trade-off graphs (depicted in Fig. 1) of the both 
systems reveal that the system based on Cosine distance 
outperform the Euclidean system over almost the whole of 
the graph especially in the low speaker impurity rate region. 
   

5. CONCLUSION 
 
In this paper we have presented a modified version of Mean 
Shift algorithm obtained by replacing the Euclidean distance 
with the Cosine one. As it is tested on a large dataset (SRE 
2008) we achieved a relative improvement of 11% - as 
measured by equal impurities - compared to the baseline 
version of MS. Also, we have shown that new MS version 
outperforms the baseline for most operating points in the 
trade-off plotting. Finally, we expect that these results could 
be improved if we apply a score normalization method (as 
ZT-norm or s-norm) to the Cosine scores [7]. Furthermore, 
we expect also an improvement by implementing a gender 
independent scoring in the way presented in [10].        
 

6. REFERENCES 
 

[1] K. Fukunaga and L. Hostetler, “The estimation of the gradient 
of a density function, with applications in pattern 
recognition,” IEEE Trans. on Information Theory, vol. 21, no. 
1, pp. 32–40, January 1975. 

[2] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, 
“Front-end factor analysis for speaker verification,” IEEE 
Transactions on Audio, Speech, and Language Processing, 
July 2010. 

[3] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering,” IEEE 
Trans. PAMI, vol. 17, no. 8, pp. 790-799, 1995. 

[4] D. Comaniciu and P. Meer, “Mean shift: A robust approach 
toward feature space analysis,” IEEE Trans. Pattern Analysis 
and Machine Intelligence, vol. 24, no. 5, pp. 603 – 619, May 
2002. 

[5] T. Stafylakis, V. Katsouros, and G. Carayannis, “Speaker 
clustering via the mean shift algorithm,” in Odyssey 2010: 
The Speaker and Language Recognition Workshop - 
Odyssey-10, Brno, Czech Republic, June 2010. 

[6] T. Stafylakis, V. Katsouros, P. Kenny, and P. Dumouchel, 
“Mean Shift Algorithm for Exponential Families with 
Applications to Speaker Clustering,” Proc. Odyssey Speaker 
and Language Recognition Workshop,  Singapore, June 2012. 

[7] N. Dehak, R. Dehak, J. Glass, D. Reynolds, and P. Kenny, 
"Cosine Similarity Scoring without Score Normalization 
Techniques," Proc. IEEE Odyssey Workshop, Brno, Czech 
Republic, June 2010. 

[8] D. Garcia-Romero, “Analysis of i-vector length normalization 
in Gaussian-PLDA speaker recognition systems,” in 
Proceedings of Interspeech, Florence, Italy, Aug. 2011. 

[9] D. van Leeuwen, “Speaker linking in large data sets,” Proc. 
IEEE Odyssey Workshop, Brno, Czech Republic, June 2010.  

[10] M. Senoussaoui, P. Kenny, N. Brummer, E. de Villiers and P. 
Dumouchel, “Mixture of PLDA Models in I-Vector Space for 
Gender-Independent Speaker Recognition,” in Proceedings of 
Interspeech, Florence, Italy, Aug. 2011. 

7715


